US012141045B2

a2 United States Patent
Sethi et al.

US 12,141,045 B2
Nov. 12,2024

(10) Patent No.:
45) Date of Patent:

(54) CONTROLLER FAILURE PREDICTION AND
TROUBLESHOOTING

(56) References Cited

U.S. PATENT DOCUMENTS

(71) Applicant: Dell PrOdUCts L'P'S Round ROCkS TX 2019/0095313 Al * 3/2019 Xu """""""""""""" G06F 17/18
(Us) 2022/0019935 Al*  1/2022 Ghatage ... GOG6F 11/3065
2022/0358005 Al* 11/2022 Saha .....ccceeen. GOG6F 40/216
(72) Inventors: Parminder Singh Sethi, Ludhiana (IN); 2023/0161662 Al* 52023 Wollny ........... GOG6F 11/3476
Nithish Kote, Bangalore (IN); Thanuja 714/48
C, Bangalore (IN)
OTHER PUBLICATIONS
(73)  Assignee: ]%eél Products L.P., Round Rock, TX Dell Technologies, “How to Export the PERC Controller Debug
Us) Log via the BIOSRAID Controller,” Article No. 000134783, https://
" . . . . . www.dell.com/support/kbdoc/en-in/000134783/how-to-export-the-
(*) Notice: SUbJeCt. to any dlSCIalmer{ the term of this perc-controller-debug-log-via-the-bios-raid-controller, Sep. 30, 2021,
patent is extended or adjusted under 35 6 pages.
U.S.C. 154(b) by 63 days. S. Flynn, “What is the Difference Between Test Data and Live
Data?” https://opendatascience.com/what-is-the-difference-between-
(21)  Appl. No.: 17/982,743 test-data-and-live-data/, Dec. 27, 2021, 5 pages.
(22) Filed:  Nov. 8, 2022 * cited by examiner
: . 8,
Primary Examiner — Marc Duncan
(65) Prior Publication Data gﬁl})) Attorney, Agent, or Firm — Ryan, Mason & Lewis,
US 2024/0152442 Al May 9, 2024
(57) ABSTRACT
Techniques for failure prediction of controllers are dis-
(51) Imt. ClL : :
closed. For example, a method comprises collecting data
GO6F 11/00 (2006.01) . . !
corresponding to operation of a plurality of controllers from
Go6E 11/07 (2006.01) one or more devices, and predicting, using one or more
GO6F 11/34 (2006.01) machine learning algorithms, at least one of degradation and
(52) US.CL failure of one or more controllers of the plurality of con-
cre ... GO6F 11/3476 (2013.01); GO6F 11/0751 trollers based, at least in part, on the data corresponding to
(2013.01); GO6F 11/0793 (2013.01); GO6F the operation of the plurality of controllers. Using the one or
11/349 (2013.01); GOGF 11/0706 (2013.01) more machine learning algorithms, one or more corrective
(58) Field of Classification Search actions to prevent the at least one of the degradation and the

CPC ....cccue. GOG6F 11/3476; GOG6F 11/0751; GOGF
11/093; GO6F 11/2257; GO6F 11/2263;
GOG6F 18/10; GO6F 18/24; GOGF 40/20
See application file for complete search history.

failure of the one or more controllers are identified. Instruc-
tions comprising the one or more corrective actions are
generated and transmitted to at least one user device.

20 Claims, 11 Drawing Sheets

900

902-~_| COLLECT DATA CORRESPONDING TO OPERATION OF A PLURALITY
OF CONTROLLERS FROM ONE OR MORE DEVICES

¥
PREDICT, USING ONE OR MORE MACHINE LEARNING
ALGORITHMS, AT LEAST ONE OF DEGRADATION AND FAILURE OF
ONE OR MORE CONTROLLERS OF THE PLURALITY OF
CONTROLLERS BASED, AT LEAST IN PART, ON THE DATA

904
™ CORRESPONDING TO THE OPERATION OF THE PLURALITY OF
CONTROLLERS
IDENTIFY, USING THE ONE OR MORE MACHINE LEARNING
906~_| ALGORITHMS, ONE OR MORE CORRECTIVE ACTIONS TO PREVENT

THE AT LEAST ONE OF THE DEGRADATION AND THE FAILURE OF
THE ONE OR MORE CONTROLLERS

}

GENERATE INSTRUCTIONS COMPRISING THE ONE OR MORE
CORRECTIVE ACTIONS, WHEREIN THE INSTRUCTIONS ARE
TRANSMITTED TO AT LEAST ONE USER DEVICE

908—~_|




US 12,141,045 B2

Sheet 1 of 11

Nov. 12, 2024

U.S. Patent

L "Oid

L NOLLVY3NIO
LH043Y

Ol INIONT LNdiN0

el NOILVDIZISSY1D

£€€L NOILO313d
ATVINONY

0ZL INIONI

-~

4

A%
DONINYVYIT NE31L1vd

iel
NOLLVZIHMOOFLVD
ONY ONIINLOMNYLS

0€1 INIONT NOLLOIGFEd FHNTIVLE ONY SOILATVYNY ViVQ

Ly

A

Y

v_ 0¢l 3Sv9 IDUAFTMONMA _u

L

NOILOFTIOO VLV

h

011 WBO41Vd NOLLOIGTdd 6NTIVL 43 TI0HINGD

a-cot
3OIN3A J3sn

Y0l MHOMLIN

\

1-G0L
(S)HITI0YINOD

L-€01 J3AAE8

A4V

30IA3A H3SN

L-204

IOIN3A H3sN

a-G0L

(SIITIOHINOD

d-€0L H3NA3S

Z-50L
{S)YITIOHINOD

Z-€0) "3AY3s




US 12,141,045 B2

Sheet 2 of 11

Nov. 12, 2024

U.S. Patent

¢ Old

Z2-602
7 ISOOUGT

BMICT TR

Husdchapy
A G OA

00z

1-50¢
T IEjoauns

<
Z-16¢ » i-16¢

. ¥Ge
;ltltl?f £y wnify el o




US 12,141,045 B2

Sheet 3 of 11

Nov. 12, 2024

U.S. Patent

€0¢
SNOILO3TIOD
03sva LN3IAG

€ Old

20¢
SNOILO37100
a31nda3Hos

10€

S1S3N03Y
JOING3S

MOVHL




US 12,141,045 B2

Sheet 4 of 11

Nov. 12, 2024

U.S. Patent

gcl
SO0 IN3AT SO

¥ 'Old

9zl
SO0TALL OY3d

Y2l vivda
NOILVHNSDIANOD
FAVMAAVYH
HIAASES

021 3NIONI NOILDITNOD vivd

3

421 SD019N493d

821 vivd
NOILVOIddV

62l

SO0139VH0LS

1Zi SO01
WO "3AYES

€21 5907

Ovdal ¥3AH3S

Z¢l viva
NOILVZITILN
NILSAS SO




US 12,141,045 B2

Sheet 5 of 11

Nov. 12, 2024

U.S. Patent

g 'Old

123111 Hg) uo st romod ay) sjiym uado st SISSEYD oy}
el Aoedes spaaoxs 1omod WBISAS asnesaq pajjey woisAs ay
(snsd)

1eonn suun Aiddng 1omod ayj Ag palddns Jamod syl spasoxs Wd)sAs syl Aq pasinbal lomod
Busuiep UMOD Si Uil MIOMIBU | LO0d € 10| Ul DIN 84}
SpU0Das (Y J0}

Buiusepn paYoo|q 89 [iM di ‘HSS Buisn 26 6 €01 001 Wod uedszuip ssao0ud 1o} psje 1dwene wbon
Buiuiepn sAep ¢ Ul sandxs Q! 921A9p 0] paubiSSe asuadl
Butusepm pajie sey ¢ 1S Ut J9jj04U0D divy U0 6EZ YSIQ {ENHIA
SUOJO8ULOD

{eo1I0 vjgeD 10 NSd W sansst jo asneodsq Jamod ndur Buiaieoss jou st | (NSd) nun Aiddng semog
Bututepn paAOWBI SI () BAL(Q
Buiuseps sjiejep ejep [euofeiado Buinsiyal JoN
1=ehililg) SMOpPUIM UC 8ansst 3OSy
{EORUD ansst gOsy
{eOLD sJoALp ay) Buyepdn ajym ensst JOSd
Bupiep IBAJRS BY} UO Palosiap SHO0G ped
{BORLD Bugooq jou 1NS

Alvis

AALNT 907

Q)

L




US 12,141,045 B2

Sheet 6 of 11

Nov. 12, 2024

U.S. Patent

009

9°'9ld




US 12,141,045 B2

Sheet 7 of 11

Nov. 12, 2024

U.S. Patent

g/ "Old V. '©Old

Z0L 104



US 12,141,045 B2

Sheet 8 of 11

Nov. 12, 2024

U.S. Patent

8 'Old

{{0°00T « AdeandaR) 9%, %%IT % Adeinday, Jiunid
{suondipaid 1531 A}a100s™ Adesndoe = Aseunaoe
SUOIDIpaId a1eNn|BAS §

[pa4d™A U1 anjen Joj (anjeA)punod] = suoiipald
(3533 X)101p2ududal = paid™A
e1ep 159) 40} SUODIpaJd aew #

{wieay™ A ‘ureny x)14u8a4
(0=91215 Wopury ‘Z=t3dap” xew)ossaidayisaio4wopuey = 13

{poos=01els” WIOpURS ‘DZIS 1581=92iS 1531
‘A" papoous” |aqe) ‘K)Hds 1591 UIBIIUOIIIRIBS [APOW = 1581 A ‘uledl” A 1591 X ‘uiedy X
€60 = 82 3581
[ = paas

{A)uriogsuesyuapodua” jage) = A papooua |aqe|
{AJuepoduaT|age| = JIPOIUD” |3qR]
(J48poaugieqe = Jopoaua” |age]

sJ19831ul se $anjeA ssejd uials apoduR #

[g"]ieserEp = A
[5:0“]1aserep = X
A pue x ojut exep 1ids #

{19se3eplund

sanjeaelep = 19seiep

(suoN=19peaY ‘ ASI UOIIRZI|IIN JBAISS,)ASD pesssepued = ejep
BI1BD DRO| #

Japoduzjeqet Joduwi Buissasosdasd uieap)s wioay

3402$ A2einooe 1ioduul SD1IIDW UIBIPS WO

UO}103]3S |opow Hodwi UIeap|s wo)
Jossaidayisalo4wopuey Joduil BjGUIASUD LIPS WO
sepued podud




US 12,141,045 B2

Sheet 9 of 11

Nov. 12, 2024

U.S. Patent

6 "Old

JOIAIA J3SN INO 1SVTT LV OL G3LLINSNVHL
4V SNOILLONYLSNI FHL NIFHIHM "'SNOILOV IAILOFHHOD
JHOW HO INO 3HL ONISIHdINOD SNOILLDNYLSNI 31VHINIO

| -806

A

SHITTIOHLINOD FHONW H0O 3INO FHL
40 FHENTIVL FHL NV NOLLYAVHO3d 3HL 40 3INO 1Sv3T 1V 3HL
INIATHd O1 SNOILOV IALLOTHHOD FHOW HO INO 'SWHLINOD TV
ONINYVYIT INIHOVIN FHOW HO INO FHL ONISN AJILNIAI

A

SHITIOHLINOD
40 ALNVEHNTd 3HL 40 NOILVH3dO 3HL OL ONIONOdSIHAHOD
ViVA FHL NO LHVd NI 1SV 1V ‘d3SvE SHITIOHINOD
40 ALINVEN 1] 3HL 40 SHITIOHLINOD FHONW HO 3INO
40 ANV ANY NOILVAYHO A 40 3INO LSV 1V 'SWHLIHODTY
ONINYYIT ANIHOVIN JHON JO INO ONISN LoI1a3¥d

S30IA3J FHON JO INO NOH4 SHITIOYLINOD 40
ALINTVHEN T V 40 NOILYH3dO 0L ONIANOdSIHH0D vivd 1037100

206




US 12,141,045 B2

Sheet 10 of 11

Nov. 12, 2024

U.S. Patent

0l "Old

\~1-Z00}

5001 THNLONYLSYHANI TVOISAHd
00,1 THNLONYLSYHANI NOLLYZIIVNLYIA
1138 Z13s b 138
1-zooy | SINIVANOD . H3NIVINOD Y3INIVINOD
HO/ANY WA HO/ANY WA
22001 | HO/ANY WA
\ Sddv Sddv Sddv
0001 P / -
T-0104 Z-0L04 1-0L04



US 12,141,045 B2

Sheet 11 of 11

Nov. 12, 2024

U.S. Patent

AHOWIN

| R ARR

mOmwwoomm 0L

FOVAYILINI MHOMLAN ~_, 1)

\-1-Z0L)
IDIAIA ONISSTIOOH
001t

3DIA3A -
@Z_WWMOOK& /v_..NO:

Ll "Old

¥OLL

JOIA3A

ONISS300Yd

/N-NOS

30IA3d
ONISSIO0Hd

-g-Z0LL




US 12,141,045 B2

1
CONTROLLER FAILURE PREDICTION AND
TROUBLESHOOTING

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

FIELD

The field relates generally to information processing
systems, and more particularly to controller management in
such information processing systems.

BACKGROUND

Storage and network controllers are instrumental in estab-
lishing reliable storage systems with data redundancy. As a
result of heavy utilization due to large volumes of input-
output (IO) operations, the performance of controllers may
degrade over time to the point of failure. The reasons for
failure or performance degradation can be captured in logs,
but support teams or customers may not understand how to
debug the logs and take necessary corrective actions. Addi-
tionally, degradation or failure typically occurs before any
corrective action is taken.

SUMMARY

Embodiments provide a controller failure prediction plat-
form in an information processing system.

For example, in one embodiment, a method comprises
collecting data corresponding to operation of a plurality of
controllers from one or more devices, and predicting, using
one or more machine learning algorithms, at least one of
degradation and failure of one or more controllers of the
plurality of controllers based, at least in part, on the data
corresponding to the operation of the plurality of controllers.
Using the one or more machine learning algorithms, one or
more corrective actions to prevent the at least one of the
degradation and the failure of the one or more controllers are
identified. Instructions comprising the one or more correc-
tive actions are generated and transmitted to at least one user
device.

Further illustrative embodiments are provided in the form
of a non-transitory computer-readable storage medium hav-
ing embodied therein executable program code that when
executed by a processor causes the processor to perform the
above steps. Still further illustrative embodiments comprise
an apparatus with a processor and a memory configured to
perform the above steps.

These and other features and advantages of embodiments
described herein will become more apparent from the
accompanying drawings and the following detailed descrip-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts an information processing system with a
controller failure prediction platform for predicting control-
ler failure in an illustrative embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 depicts an operational flow for the generation of
virtual drives by controllers in an illustrative embodiment.

FIG. 3 depicts different types of data collection in an
illustrative embodiment.

FIG. 4 depicts different types of data collected by a data
collection engine in an illustrative embodiment.

FIG. 5 depicts a table including different log entries and
their corresponding states in an illustrative embodiment.

FIG. 6 depicts a table including troubleshooting options in
connection with controller failures in an illustrative embodi-
ment.

FIGS. 7A and 7B depict screenshots of troubleshooting
options in connection with controller failures that may be
displayed on a user device in an illustrative embodiment.

FIG. 8 depicts example pseudocode for the operation of a
data analytics and failure prediction engine in an illustrative
embodiment.

FIG. 9 depicts a process for controller failure prediction
according to an illustrative embodiment.

FIGS. 10 and 11 show examples of processing platforms
that may be utilized to implement at least a portion of an
information processing system according to illustrative
embodiments.

DETAILED DESCRIPTION

Tustrative embodiments will be described herein with
reference to exemplary information processing systems and
associated computers, servers, storage devices and other
processing devices. It is to be appreciated, however, that
embodiments are not restricted to use with the particular
illustrative system and device configurations shown.
Accordingly, the term “information processing system” as
used herein is intended to be broadly construed, so as to
encompass, for example, processing systems comprising
cloud computing and storage systems, as well as other types
of processing systems comprising various combinations of
physical and virtual processing resources. An information
processing system may therefore comprise, for example, at
least one data center or other type of cloud-based system that
includes one or more clouds hosting tenants that access
cloud resources. Such systems are considered examples of
what are more generally referred to herein as cloud-based
computing environments. Some cloud infrastructures are
within the exclusive control and management of a given
enterprise, and therefore are considered “private clouds.”
The term “enterprise” as used herein is intended to be
broadly construed, and may comprise, for example, one or
more businesses, one or more corporations or any other one
or more entities, groups, or organizations. An “entity” as
illustratively used herein may be a person or system. On the
other hand, cloud infrastructures that are used by multiple
enterprises, and not necessarily controlled or managed by
any of the multiple enterprises but rather respectively con-
trolled and managed by third-party cloud providers, are
typically considered “public clouds.” Enterprises can choose
to host their applications or services on private clouds,
public clouds, and/or a combination of private and public
clouds (hybrid clouds) with a vast array of computing
resources attached to or otherwise a part of the infrastruc-
ture. Numerous other types of enterprise computing and
storage systems are also encompassed by the term “infor-
mation processing system” as that term is broadly used
herein.

As used herein, “real-time” refers to output within strict
time constraints. Real-time output can be understood to be
instantaneous or on the order of milliseconds or microsec-
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onds. Real-time output can occur when the connections with
a network are continuous and a user device receives mes-
sages without any significant time delay. Of course, it should
be understood that depending on the particular temporal
nature of the system in which an embodiment is imple-
mented, other appropriate timescales that provide at least
contemporaneous performance and output can be achieved.

As used herein, a “controller” is to be broadly construed,
and refers to a hardware device and/or software program
used for example, to manage storage devices and/or arrays,
orchestrate network functions, interface with other devices
and/or perform other types of functions. Some examples of
controllers include, but are not necessarily limited to, stor-
age controllers, network controllers, host bus adaptor (HBA)
controllers, redundant array of independent disks (RAID)
controllers, remote access controllers and corresponding
cards associated therewith.

As used herein, “natural language” is to be broadly
construed to refer to any language that has evolved naturally
in humans. Non-limiting examples of natural languages
include, for example, English, Spanish, French and Hindi.

As used herein, “natural language processing (NLP)” is to
be broadly construed to refer to interactions between com-
puters and human (natural) languages, where computers are
able to derive meaning from human or natural language
input, and respond to requests and/or commands provided
by a human using natural language.

As used herein, “natural language understanding (NLU)”
is to be broadly construed to refer to a sub-category of
natural language processing in artificial intelligence (Al)
where natural language input is disassembled and parsed to
determine appropriate syntactic and semantic schemes in
order to comprehend and use languages. NLLU may rely on
computational models that draw from linguistics to under-
stand how language works, and comprehend what is being
said by a user.

As used herein, “image” is to be broadly construed to
refer to a visual representation which is, for example,
produced on an electronic display such as a computer screen
or other screen of a device. An image as used herein may
include, but is not limited to, a screen shot, window, message
box, error message or other visual representation that may be
produced on a device. Images can be in the form of one or
more files in formats including, but not necessarily limited
to, Joint Photographic Experts Group (JPEG), Portable
Network Graphics (PNG), Graphics Interchange Format
(GIF), and Tagged Image File (TIFF).

FIG. 1 shows an information processing system 100
configured in accordance with an illustrative embodiment.
The information processing system 100 comprises user
devices 102-1, 102-2, . . . 102-D (collectively “user devices
102”) and servers 103-1, 103-2, . . . 103-P (collectively
“servers 103”). Each of the servers 103 includes one or more
controllers 105-1, 105-2, . . ., 105-P (collectively “control-
lers 105”) The user devices 102 and servers 103 communi-
cate over a network 104 with a controller failure prediction
platform 110. The variables D and P and other similar index
variables herein such as K and L are assumed to be arbitrary
positive integers greater than or equal to one.

Storage and network controllers establish reliable enter-
prise-storage systems with data redundancy and improve
performance. In a non-limiting illustrative example, refer-
ring to the operational flow 200, storage controllers 205-1
and 205-2 respectively create virtual drive (VD) 251-1 and
virtual drive 251-2, which are used by the software stack 252
for redundancy purposes. The storage controllers 205-1 and
205-2 perform virtual drive to virtual function (VF) mapping
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for a logical unit 254. Data is distributed across the virtual
drives 251-1 and 251-2 in several ways and the virtual drives
251-1 and 251-2 are used in a real-time production envi-
ronment for customer applications and workloads.

The user devices 102 and servers 103 can comprise, for
example, desktop, laptop or tablet computers, servers, host
devices, storage devices, mobile telephones, Internet of
Things (IoT) devices or other types of processing devices
capable of communicating with the controller failure pre-
diction platform 110 over the network 104. Such devices are
examples of what are more generally referred to herein as
“processing devices.” Some of these processing devices are
also generally referred to herein as “computers.” The user
devices 102 and servers 103 may also or alternately com-
prise virtualized computing resources, such as virtual
machines (VMs), containers, etc. The user devices 102
and/or servers 103 in some embodiments comprise respec-
tive computers associated with a particular company, orga-
nization or other enterprise. It is to be understood that
although the embodiments are discussed in terms of user
devices 102 (e.g., customer or client devices) and servers
103, the embodiments are not necessarily limited thereto,
and may be applied to different devices (e.g., edge or cloud
devices).

The terms “user,” “customer,” “client” or “administrator”
herein are intended to be broadly construed so as to encom-
pass numerous arrangements of human, hardware, software
or firmware entities, as well as combinations of such entities.
Controller failure prediction services may be provided for
users utilizing one or more machine learning models,
although it is to be appreciated that other types of infra-
structure arrangements could be used. At least a portion of
the available services and functionalities provided by the
controller failure prediction platform 110 in some embodi-
ments may be provided under Function-as-a-Service
(“FaaS”), Containers-as-a-Service (“CaaS”) and/or Plat-
form-as-a-Service (“PaaS”) models, including cloud-based
FaaS, CaaS and PaaS environments.

Although not explicitly shown in FIG. 1, one or more
input-output devices such as keyboards, displays or other
types of input-output devices may be used to support one or
more user interfaces to the controller failure prediction
platform 110, as well as to support communication between
the controller failure prediction platform 110 and connected
devices (e.g., user devices 102 and servers 103) and/or other
related systems and devices not explicitly shown.

In some embodiments, the user devices 102 are assumed
to be associated with repair and/or support technicians,
system administrators, information technology (IT) manag-
ers, software developers, release management personnel or
other authorized personnel configured to access and utilize
the controller failure prediction platform 110.

As noted above, the performance of controllers may
degrade over time to the point of failure, and the reasons for
failure or performance degradation may be captured in logs.
However, support teams or customers may have little or no
understanding how to debug the logs and take necessary
corrective actions. Moreover, with conventional approaches,
degradation or failure typically occurs before any corrective
action is taken.

In an effort to address the above technical problems,
illustrative embodiments use machine learning techniques to
predict controller issues prior to controller failure and to
alert users with proposed corrective actions to avoid failure.
Advantageously, live and historical controller operational
data including, for example, system information, storage
logs, operating system (OS) and application data and debug

29 < 29 <
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logs is collected and analyzed using one or more machine
learning algorithms. The machine learning algorithms(s)
predict which controllers may fail and output comprehensive
details regarding the root cause of controller issues, and
solutions for troubleshooting the issues. As used herein,
“live data” refers to, for example, data corresponding to
current (e.g., real-time) use of a device, system and/or
component (e.g., controller), and “historical data” refers to,
for example, data corresponding to past use of a device,
system and/or component.

The controller failure prediction platform 110 in the
present embodiment is assumed to be accessible to the user
devices 102 and servers 103 and vice versa over the network
104. The network 104 is assumed to comprise a portion of
a global computer network such as the Internet, although
other types of networks can be part of the network 104,
including a wide area network (WAN), a local area network
(LAN), a satellite network, a telephone or cable network, a
cellular network, a wireless network such as a WiFi or
WIiMAX network, or various portions or combinations of
these and other types of networks. The network 104 in some
embodiments therefore comprises combinations of multiple
different types of networks each comprising processing
devices configured to communicate using Internet Protocol
(IP) or other related communication protocols.

As a more particular example, some embodiments may
utilize one or more high-speed local networks in which
associated processing devices communicate with one
another utilizing Peripheral Component Interconnect
express (PCle) cards of those devices, and networking
protocols such as InfiniBand, Gigabit Ethernet or Fibre
Channel. Numerous alternative networking arrangements
are possible in a given embodiment, as will be appreciated
by those skilled in the art.

Referring to FIG. 1, the controller failure prediction
platform 110 includes a data collection engine 120, a data
analytics and failure prediction engine 130, an output engine
140 and a knowledge base 150. The data analytics and
failure prediction engine 130 comprises a structuring and
categorization layer 131, a pattern learning layer 132, an
anomaly detection layer 133 and a classification layer 134.
The output engine 140 comprises a report generation layer
141.

The data collection engine 120 collects operational data
corresponding to the operation of the controllers 105 and of
other server components from servers 103. The data can be
collected using one or more data collection applications such
as, but not necessarily limited to, SupportAssist Enterprise
available from Dell Technologies. Referring to FIG. 3, the
data collection engine 120 collects operational data from the
servers by tracking service requests 301, through scheduled
collections 302 at designated times and/or through event-
based collections 303. For example, when service requests
for repair or other issues corresponding to given ones of the
servers 103 are initiated, the data collection engine 120
processes the service requests and collects operational data
associated with the subject server and/or components (e.g.,
controllers 105) identified in the service request. Scheduled
collections 302 occur at pre-defined times or intervals speci-
fied by, for example, a user via one or more user devices 102
or automatically scheduled by the data collection engine
120. Event-based collections 303 are triggered by one or
more events such as, but necessarily limited to, component
(e.g., controller 105) failure, a detected degradation of
performance of a component, installation of new software or
firmware, the occurrence of certain operations, etc. In some
embodiments, an integrated Dell® remote access controller
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6

(iDRAC) causes the data collection engine 120 to collect
operational data from one or more servers 103 and export the
collected operational data to a location (e.g., database or
cache) on the controller failure prediction platform 110 or to
a shared network location (e.g., centralized database). In
some embodiments, the operational data is stored in a
portion of the knowledge base 150. In some embodiments,
in connection with the event-based collections 303, the data
collection engine 120 evaluates the health of servers 103,
and of storage and networking devices for changes in
performance metrics (e.g., decreases in input-output opera-
tions per second (IOPS) and throughput, increases in
latency, etc.) to eliminate downtime before it occurs. Opera-
tional data may be automatically collected by the data
collection engine 120 responsive to one or more service
requests and/or events, and through scheduled collections
302.

Referring to FIG. 4, the operational data collected by the
data collection engine 120 includes, but is not necessarily
limited to, server OpenManage (OM) logs 121, operating
system (OS) utilization data 122, server iDRAC logs 123,
server hardware configuration data 124, OS event logs 125,
PowerEdge™ RAID Controller (PERC TTY) logs 126,
debug logs 127, application data 128 and storage logs 129.
The data collection engine 120 collects live and historical
data, which includes, for example, system information,
storage logs, OS and application data, basic input-output
system (BIOS) serial logs and debug logs. The BIOS serial
logs can be collected using secure shell (SSH) protocol.

Some example log entries prior to failure of a controller
105 include reference to, for example, an error-correcting
code (ECC), controller reset, aborted operations, failure of a
highly available sync pool, a triggered watchdog, crashes,
failure of background initialization (BGI), a corrupted con-
sistency check (CC), request time outs, network bounces,
etc. Other example log entries, which may be related to
controller failure, specity, for example, out of memory,
network table full-dropping packet, call traces, unsupported
bits, etc. Some of the references may be extracted from error
messages. As explained in more detail herein, reasons for
controller failure may be detectable in clusters of log
instances (e.g., errors, exceptions, critical log entries, etc.)
across multiple logs.

The data collected from the data collection engine 120 is
input to the data analytics and failure prediction engine 130
and to the knowledge base 150. The data, which includes
real-time data, is collected and monitored periodically for
decision making and maintains information about the serv-
ers 103 in a centralized location (e.g., knowledge base 150).
The knowledge base 150 improves decision-making, prob-
lem-solving and triaging of data.

The data analytics and failure prediction engine 130 is an
intelligent module used to supply comprehensive insight
into the root cause of issues, and provides solutions for
troubleshooting the issues. Using one or more machine
learning algorithms (e.g., a random forest machine learning
algorithm), the classification layer 134 of the data analytics
and failure prediction engine 130 predicts degradation and/
or failure of one or more controllers 105 based at least in part
on the operational data corresponding to the operation of the
controllers 105 collected by the data collection engine 120.
Using the one or more machine learning algorithms, the
classification layer 134 identifies one or more corrective
actions (e.g., troubleshooting actions) to prevent the degra-
dation and/or failure of the one or more controllers 105. A
report generation layer 141 of the output engine 140 gen-
erates instructions comprising the one or more corrective
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actions, and causes transmission of the instructions to one or
more user devices 102 over network 104.

In illustrative embodiments, the data corresponding to the
operation of the controllers 105 collected by the data col-
lection engine 120 comprises historical data and live data.
The one or more machine learning algorithms are trained
with at least a portion of the historical data. For example, the
historical data comprises a plurality of logged events which
resulted in failure or degradation of one or more of the
controllers 105. As a result of the training, based on simi-
larities with the logged events in the training data, the
classification layer 134 is configured to predict which
incoming logged events in the live data are likely to result
in failure or degradation of the controllers 105. For example,
the classification layer 134 analyzes log entries to classify
the log entries as critical (e.g., relating to imminent failure
and/or degradation of a controller 105), warnings (e.g.,
relating to failure and/or degradation of a controller 105, but
not imminent failure or degradation), and informational
(e.g., less likely to relate to or not relating failure and/or
degradation of a controller 105). FIG. 5 depicts a table 500
including different log entries and their corresponding states
that may be classified by the data analytics and failure
prediction engine 130.

In some scenarios, the historical data includes logged
events identifying steps that were taken and resulted in
resolution of one or more issues with the controllers 105. As
a result of the training, based on similarities with the logged
events in the training data, the classification layer 134 is
configured to identify corrective actions that can be taken for
incoming logged events in the live data. The identified
corrective actions are based on the resolution steps taken for
the similar logged events in the training data. FIG. 6 depicts
a table 600 including troubleshooting options (e.g., correc-
tive actions) in connection with controller failures. Simi-
larly, FIGS. 7A and 7B depict screenshots 701 and 702 of
troubleshooting options in connection with controller fail-
ures that may be displayed on a user device 102. As can be
seen in FIGS. 6, 7A and 7B, a problem (e.g., SUT not
booting, iDRAC is not accessible, peripheral component
interconnect (PCI) non-fatal error) is identified along with a
checklist of corrective actions to be taken to resolve the issue
and prevent component degradation and/or failure. In the
case of screenshots 701 and 702, the problem is identified
following a search for the issue, and can be selected from
suggested issues based on the search terms. According to
one or more embodiments, the search terms, which are
entered via an interface on a user device 102 (e.g., an
interface like that shown in FIGS. 7A and 7B), are input to
the data analytics and failure prediction engine 130. Based
on the search terms, the classification layer 134, using the
one or machine learning algorithms in combination with
NLP/NLU techniques, identifies the issue and corrective
actions to be taken to resolve the issue. The report generation
layer 141 generates instructions comprising the corrective
actions, which can be displayed for a user on a user device
102 in the formats shown in screenshots 701 and 702.

In illustrative embodiments, the data corresponding to the
operation of the controllers 105 comprises unstructured data,
which is structured and categorized by the structuring and
categorization layer 131. In a non-limiting illustrative
example, the structuring and categorization layer 131 uses a
random forest algorithm to categorize issues in the opera-
tional data. The structuring and categorization layer 131
further utilizes image analysis, NLP and/or NL.U techniques
to categorize the data. In more detail, since logs comprise
textual data, NLP and/or NLU techniques are used to iden-
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tify key terms and/or phrases in the logged entries. In some
embodiments, text and semantics are extracted from a log
image. In order to parse through unstructured text, the
embodiments utilize a combination of a mask region-based
convolutional neural network (Mask-R-CNN) algorithm
with optical character recognition (OCR), which accom-
plishes object detection, text object segmentation and text
extraction for an image.

According to illustrative embodiments, a pattern learning
layer 132 of the data analytics and failure prediction engine
130 analyzes the operational data (e.g., the log entries) to
identify patterns in the operational data corresponding to
changes in one or more performance metrics of the control-
lers 105 or other components of the servers 103. For
example, the pattern learning layer 132 analyzes each log
entry to determine patterns for performance metric changes
for each log entry or group of log entries. In some cases,
certain individual log entries or groups of log entries may
correspond to, for example, patterns of reduced IOPS (e.g.,
read and/or write operations per second), reduced through-
put and/or increased latency. The patterns may be learned
during training with the historical data, and recognized by
the machine learning algorithms in log entries for the live
data. Such patterns of, for example, reduced IOPS, reduced
throughput and/or increased latency, and their corresponding
log entries are correlated by the classification layer 134 to
predict instances of possible failure and/or degradation of
one or more controllers 105 or other server components.

According to illustrative embodiments, an anomaly detec-
tion layer 133 of the data analytics and failure prediction
engine 130 analyzes the operational data (e.g., the log
entries) to identify anomalous events in at least a portion of
the log entries, and to identify common anomalous events in
multiple ones of the plurality of log entries. To detect
anomalous events, the anomaly detection layer 133 is
trained with historical operational data collected from the
data collection engine 120 to learn which logged events
depict normal operation of the controllers 105 or other
components. The anomaly detection layer 133 uses an
unsupervised learning approach to detect anomalies in
operations. Normal operations with respect to particular
attributes (e.g., performance metrics) are learned from his-
torical operations data (e.g., historical log entries). Anomaly
detection or outlier detection identifies situations that are not
considered normal based on the observation of the properties
being considered. For example, according to illustrative
embodiments, the anomaly detection layer 133 identifies
clusters of normal operations across multiple log entries
where performance metrics (e.g., IOPS, throughput, latency)
are at certain levels and/or where messages indicate normal
operation and/or a lack of errors. During anomalous situa-
tions, the performance metrics vary from the normal ranges,
and/or there are messages indicating operational issues
and/or errors. According to illustrative embodiments, the
anomaly detection layer 133 identifies clusters of anomalous
operations across multiple log entries where operations
deviate from what has been concluded to be normal states.

The machine learning models used by the anomaly detec-
tion layer 133 leverage an unsupervised learning methodol-
ogy for outlier detection of logged events. The unsupervised
learning methodology may utilize, for example, shallow or
deep learning. In an embodiment, the machine learning
models implement multivariate anomaly detection using an
isolation forest algorithm, which does not require labeled
training data. The isolation forest algorithm identifies
anomalies among the normal observations, by setting up a
threshold value in a contamination parameter that can apply
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for real-time predictions. The isolation forest algorithm has
the capacity to scale up to handle extremely large data sizes
(e.g., terabytes) and high-dimensional problems with a large
number of attributes, some of which may be irrelevant and
potential noise. In illustrative embodiments, the machine
learning model used by the anomaly detection layer 133
isolates an anomaly by creating decision trees over random
attributes. This random partitioning produces significantly
shorter paths since fewer instances of anomalies result in
smaller partitions, and distinguishable attribute values are
more likely to be separated in early partitioning. As a result,
when a group (e.g., forest) of random trees collectively
produces shorter path lengths for some particular points,
then they are highly likely to be anomalies. A larger number
of splits are required to isolate a normal point, while an
anomaly can be isolated by a shorter number of splits.

According to illustrative embodiments, the structuring
and categorization layer 131 extracts and decodes one or
more error signatures from at least a portion of the plurality
of log entries, and identifies one or more devices corre-
sponding to the controllers 105 that may appear in the log
entries. For example, the structuring and categorization layer
131 extracts and decodes error signatures from lifecycle
controller/system event logs (LC/SEL) and the report gen-
eration layer 141 includes such signatures in reports gener-
ated for users. PCle device identification may be included in
logs where device slot numbers are identified.

In some embodiments, if any of the controllers 105 are
predicted to fail or degrade, the classification layer 134 may
recommend card replacement or other corrective actions in
instructions generated by the report generation layer 141.
Additional output by the classification layer 134 identifies
the root cause of possible failure or degradation along with
debugging and triage data and checklists for performing
debugging.

FIG. 8 depicts example pseudocode 800 for the operation
of the data analytics and failure prediction engine 130. The
pseudocode 800 includes directives for importation of librar-
ies used to implement the data analytics and failure predic-
tion engine 130. For example, sklearn and Pandas libraries
can be used. Illustrative embodiments implement classifi-
cation using a random forest regressor. The pseudocode 800
also includes directives for splitting data into test and
training data. Before building the model, the collected
operational data is divided into training data and test data. In
some embodiments, the historical data is divided into train-
ing and testing datasets. Alternatively, a combination of the
historical and live data is divided into training and testing
datasets. Once the model is trained, it is used to analyze
critical logs over the testing data to identify if there is any
expected criticality. According to illustrative embodiments,
the training dataset is used for training the machine learning
model(s) while the test set is used for testing/validating and
computing accuracy score(s) of the model(s). In some
embodiments, a training set will contain 80% of the opera-
tional data, while a testing set will contain 20% of the
operational data. The pseudocode 800 further includes direc-
tives for creating a random forest with a specified number of
decision trees, training the machine learning model and
testing the machine learning model to determine its accu-
racy.

According to one or more embodiments, the knowledge
base 150 and other data repositories or databases referred to
herein can be configured according to a relational database
management system (RDBMS) (e.g., PostgreSQL). In some
embodiments, the knowledge base 150 and other data
repositories or databases referred to herein are implemented
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using one or more storage systems or devices associated
with the controller failure prediction platform 110. In some
embodiments, one or more of the storage systems utilized to
implement the knowledge base 150 and other data reposi-
tories or databases referred to herein comprise a scale-out
all-flash content addressable storage array or other type of
storage array.

The term “storage system” as used herein is therefore
intended to be broadly construed, and should not be viewed
as being limited to content addressable storage systems or
flash-based storage systems. A given storage system as the
term is broadly used herein can comprise, for example,
network-attached storage (NAS), storage area networks
(SANSs), direct-attached storage (DAS) and distributed DAS,
as well as combinations of these and other storage types,
including software-defined storage.

Other particular types of storage products that can be used
in implementing storage systems in illustrative embodi-
ments include all-flash and hybrid flash storage arrays,
software-defined storage products, cloud storage products,
object-based storage products, and scale-out NAS clusters.
Combinations of multiple ones of these and other storage
products can also be used in implementing a given storage
system in an illustrative embodiment.

Although shown as elements of the controller failure
prediction platform 110, the data collection engine 120, data
analytics and failure prediction engine 130, output engine
140 and/or knowledge base 150 in other embodiments can
be implemented at least in part externally to the controller
failure prediction platform 110, for example, as stand-alone
servers, sets of servers or other types of systems coupled to
the network 104. For example, the data collection engine
120, data analytics and failure prediction engine 130, output
engine 140 and/or knowledge base 150 may be provided as
cloud services accessible by the controller failure prediction
platform 110.

The data collection engine 120, data analytics and failure
prediction engine 130, output engine 140 and/or knowledge
base 150 in the FIG. 1 embodiment are each assumed to be
implemented using at least one processing device. Each such
processing device generally comprises at least one processor
and an associated memory, and implements one or more
functional modules for controlling certain features of the
data collection engine 120, data analytics and failure pre-
diction engine 130, output engine 140 and/or knowledge
base 150.

At least portions of the controller failure prediction plat-
form 110 and the elements thereof may be implemented at
least in part in the form of software that is stored in memory
and executed by a processor. The controller failure predic-
tion platform 110 and the elements thereof comprise further
hardware and software required for running the controller
failure prediction platform 110, including, but not necessar-
ily limited to, on-premises or cloud-based centralized hard-
ware, graphics processing unit (GPU) hardware, virtualiza-
tion infrastructure software and hardware, Docker
containers, networking software and hardware, and cloud
infrastructure software and hardware.

Although the data collection engine 120, data analytics
and failure prediction engine 130, output engine 140, knowl-
edge base 150 and other elements of the controller failure
prediction platform 110 in the present embodiment are
shown as part of the controller failure prediction platform
110, at least a portion of the data collection engine 120, data
analytics and failure prediction engine 130, output engine
140, knowledge base 150 and other elements of the control-
ler failure prediction platform 110 in other embodiments
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may be implemented on one or more other processing
platforms that are accessible to the controller failure predic-
tion platform 110 over one or more networks. Such elements
can each be implemented at least in part within another
system element or at least in part utilizing one or more
stand-alone elements coupled to the network 104.

It is assumed that the controller failure prediction plat-
form 110 in the FIG. 1 embodiment and other processing
platforms referred to herein are each implemented using a
plurality of processing devices each having a processor
coupled to a memory. Such processing devices can illustra-
tively include particular arrangements of compute, storage
and network resources. For example, processing devices in
some embodiments are implemented at least in part utilizing
virtual resources such as virtual machines (VMs) or Linux
containers (L.XCs), or combinations of both as in an arrange-
ment in which Docker containers or other types of LXCs are
configured to run on VMs.

The term “processing platform™ as used herein is intended
to be broadly construed so as to encompass, by way of
illustration and without limitation, multiple sets of process-
ing devices and one or more associated storage systems that
are configured to communicate over one or more networks.

As a more particular example, the data collection engine
120, data analytics and failure prediction engine 130, output
engine 140, knowledge base 150 and other elements of the
controller failure prediction platform 110, and the elements
thereof can each be implemented in the form of one or more
LXCs running on one or more VMs. Other arrangements of
one or more processing devices of a processing platform can
be used to implement the data collection engine 120, data
analytics and failure prediction engine 130, output engine
140 and knowledge base 150, as well as other elements of
the controller failure prediction platform 110. Other portions
of the system 100 can similarly be implemented using one
or more processing devices of at least one processing
platform.

Distributed implementations of the system 100 are pos-
sible, in which certain elements of the system reside in one
data center in a first geographic location while other ele-
ments of the system reside in one or more other data centers
in one or more other geographic locations that are poten-
tially remote from the first geographic location. Thus, it is
possible in some implementations of the system 100 for
different portions of the controller failure prediction plat-
form 110 to reside in different data centers. Numerous other
distributed implementations of the controller failure predic-
tion platform 110 are possible.

Accordingly, one or each of the data collection engine
120, data analytics and failure prediction engine 130, output
engine 140, knowledge base 150 and other elements of the
controller failure prediction platform 110 can each be imple-
mented in a distributed manner so as to comprise a plurality
of distributed elements implemented on respective ones of a
plurality of compute nodes of the controller failure predic-
tion platform 110.

It is to be appreciated that these and other features of
illustrative embodiments are presented by way of example
only, and should not be construed as limiting in any way.
Accordingly, different numbers, types and arrangements of
system elements such as the data collection engine 120, data
analytics and failure prediction engine 130, output engine
140, knowledge base 150 and other elements of the control-
ler failure prediction platform 110, and the portions thereof
can be used in other embodiments.

It should be understood that the particular sets of modules
and other elements implemented in the system 100 as
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illustrated in FIG. 1 are presented by way of example only.
In other embodiments, only subsets of these eclements, or
additional or alternative sets of elements, may be used, and
such elements may exhibit alternative functionality and
configurations.

For example, as indicated previously, in some illustrative
embodiments, functionality for the controller failure predic-
tion platform can be offered to cloud infrastructure custom-
ers or other users as part of FaaS, CaaS and/or PaaS
offerings.

The operation of the information processing system 100
will now be described in further detail with reference to the
flow diagram of FIG. 9. With reference to FIG. 9, a process
900 for controller failure prediction as shown includes steps
902 through 908, and is suitable for use in the system 100
but is more generally applicable to other types of informa-
tion processing systems comprising a controller failure
prediction platform configured for controller failure predic-
tion.

In step 902, data corresponding to operation of a plurality
of controllers is collected from one or more devices. The
plurality of controllers comprise, for example, a storage
controller, a network controller and/or a host bus adaptor
controller. In step 904, using one or more machine learning
algorithms, at least one of degradation and failure of one or
more controllers of the plurality of controllers is predicted
based, at least in part, on the data corresponding to the
operation of the plurality of controllers.

In step 906, using the one or more machine learning
algorithms, one or more corrective actions to prevent the at
least one of the degradation and the failure of the one or
more controllers are identified. In step 908, instructions
comprising the one or more corrective actions are generated.
The instructions are transmitted to at least one user device.
The one or more machine learning algorithms comprise, for
example, a random forest machine learning algorithm.

The data corresponding to the operation of the plurality of
controllers comprises unstructured data, which is structured
and categorized. The data corresponding to the operation of
the plurality of controllers comprises historical data and live
data. The one or more machine learning algorithms are
trained with at least a portion of the historical data. The
predicting of the at least one of the degradation and the
failure of the one or more controllers is based, at least in part,
on at least a portion of the live data.

In illustrative embodiments, the data corresponding to the
operation of the plurality of controllers comprises a plurality
of log entries, and the predicting comprises analyzing the
plurality of log entries to classify one or more of the plurality
of'log entries as critical. The analyzing of the plurality of log
entries comprises identifying one or more patterns in at least
a portion of the plurality of log entries corresponding to
changes in one or more performance metrics of at least a
portion of the plurality of controllers. The one or more
performance metrics comprise, for example, IOPS, through-
put and/or latency. In some embodiments, the predicting
comprises analyzing the plurality of log entries using NLP
and/or image analysis.

The analyzing of the plurality of log entries also com-
prises identifying one or more anomalous events in at least
a portion of the plurality of log entries, and identifying
common anomalous events of the one or more anomalous
events in multiple ones of the plurality of log entries. The
analyzing of the plurality of log entries further comprises
extracting and decoding one or more error signatures from
at least a portion of the plurality of log entries, and identi-
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fying one or more devices corresponding to at least a portion
of the plurality of controllers.

It is to be appreciated that the FIG. 9 process and other
features and functionality described above can be adapted
for use with other types of information systems configured
to execute controller failure prediction services in a control-
ler failure prediction platform or other type of platform.

The particular processing operations and other system
functionality described in conjunction with the flow diagram
of FIG. 9 are therefore presented by way of illustrative
example only, and should not be construed as limiting the
scope of the disclosure in any way. Alternative embodiments
can use other types of processing operations. For example,
the ordering of the process steps may be varied in other
embodiments, or certain steps may be performed at least in
part concurrently with one another rather than serially. Also,
one or more of the process steps may be repeated periodi-
cally, or multiple instances of the process can be performed
in parallel with one another.

Functionality such as that described in conjunction with
the flow diagram of FIG. 9 can be implemented at least in
part in the form of one or more software programs stored in
memory and executed by a processor of a processing device
such as a computer or server. As will be described below, a
memory or other storage device having executable program
code of one or more software programs embodied therein is
an example of what is more generally referred to herein as
a “processor-readable storage medium.”

Tlustrative embodiments of systems with a controller
failure prediction platform as disclosed herein can provide a
number of significant advantages relative to conventional
arrangements. For example, the controller failure prediction
platform effectively uses machine learning techniques to
predict controller failure and/or performance degradation,
which may lead to failure (e.g., the controller ceasing to
operate). As an additional advantage, the embodiments
provide techniques for parsing and triaging unstructured
logs from the different sources (e.g., SupportAssist,
CloudIQ), etc.) and generating troubleshooting checklists to
correct identified critical component issues. As a result, the
embodiments enable more efficient use of compute
resources, improve performance and reduce bottlenecks. For
example, even though logs may be voluminous, the machine
learning techniques implemented by the embodiments
enable immediate (e.g., real-time) identification of issues in
response to receipt of operational data.

The embodiments advantageously use machine learning
algorithms to evaluate the operational data to predict con-
troller issues. Unlike conventional techniques, the embodi-
ments provide a framework for proactively predicting and
alerting users of upcoming controller failures by analyzing
current states in operational logs and co-relating the current
states with parsed unstructured operational data. As an
additional advantage, unlike current approaches, the
embodiments provide comprehensive insight into the root
cause of issues and an interface through which users can
perform troubleshooting of issues based on provided check-
lists and instructions including recommended corrective
actions.

It is to be appreciated that the particular advantages
described above and elsewhere herein are associated with
particular illustrative embodiments and need not be present
in other embodiments. Also, the particular types of infor-
mation processing system features and functionality as illus-
trated in the drawings and described above are exemplary
only, and numerous other arrangements may be used in other
embodiments.
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As noted above, at least portions of the information
processing system 100 may be implemented using one or
more processing platforms. A given such processing plat-
form comprises at least one processing device comprising a
processor coupled to a memory. The processor and memory
in some embodiments comprise respective processor and
memory elements of a virtual machine or container provided
using one or more underlying physical machines. The term
“processing device” as used herein is intended to be broadly
construed so as to encompass a wide variety of different
arrangements of physical processors, memories and other
device components as well as virtual instances of such
components. For example, a “processing device” in some
embodiments can comprise or be executed across one or
more virtual processors. Processing devices can therefore be
physical or virtual and can be executed across one or more
physical or virtual processors. It should also be noted that a
given virtual device can be mapped to a portion of a physical
one.

Some illustrative embodiments of a processing platform
that may be used to implement at least a portion of an
information processing system comprise cloud infrastruc-
ture including virtual machines and/or container sets imple-
mented using a virtualization infrastructure that runs on a
physical infrastructure. The cloud infrastructure further
comprises sets of applications running on respective ones of
the virtual machines and/or container sets.

These and other types of cloud infrastructure can be used
to provide what is also referred to herein as a multi-tenant
environment. One or more system elements such as the
controller failure prediction platform 110 or portions thereof
are illustratively implemented for use by tenants of such a
multi-tenant environment.

As mentioned previously, cloud infrastructure as dis-
closed herein can include cloud-based systems. Virtual
machines provided in such systems can be used to imple-
ment at least portions of one or more of a computer system
and a controller failure prediction platform in illustrative
embodiments. These and other cloud-based systems in illus-
trative embodiments can include object stores.

Iustrative embodiments of processing platforms will
now be described in greater detail with reference to FIGS. 10
and 11. Although described in the context of system 100,
these platforms may also be used to implement at least
portions of other information processing systems in other
embodiments.

FIG. 10 shows an example processing platform compris-
ing cloud infrastructure 1000. The cloud infrastructure 1000
comprises a combination of physical and virtual processing
resources that may be utilized to implement at least a portion
of the information processing system 100. The cloud infra-
structure 1000 comprises multiple virtual machines (VMs)
and/or container sets 1002-1, 1002-2, . . . 1002-L. imple-
mented using virtualization infrastructure 1004. The virtu-
alization infrastructure 1004 runs on physical infrastructure
1005, and illustratively comprises one or more hypervisors
and/or operating system level virtualization infrastructure.
The operating system level virtualization infrastructure
illustratively comprises kernel control groups of a Linux
operating system or other type of operating system.

The cloud infrastructure 1000 further comprises sets of
applications 1010-1, 1010-2, . . . 1010-L running on respec-
tive ones of the VMSs/container sets 1002-1, 1002-2, . . .
1002-L under the control of the virtualization infrastructure
1004. The VMs/container sets 1002 may comprise respec-
tive VMs, respective sets of one or more containers, or
respective sets of one or more containers running in VMs.
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In some implementations of the FIG. 10 embodiment, the
VMs/container sets 1002 comprise respective VMs imple-
mented using virtualization infrastructure 1004 that com-
prises at least one hypervisor. A hypervisor platform may be
used to implement a hypervisor within the virtualization
infrastructure 1004, where the hypervisor platform has an
associated virtual infrastructure management system. The
underlying physical machines may comprise one or more
distributed processing platforms that include one or more
storage systems.

In other implementations of the FIG. 10 embodiment, the
VMs/container sets 1002 comprise respective containers
implemented using virtualization infrastructure 1004 that
provides operating system level virtualization functionality,
such as support for Docker containers running on bare metal
hosts, or Docker containers running on VMs. The containers
are illustratively implemented using respective kernel con-
trol groups of the operating system.

As is apparent from the above, one or more of the
processing modules or other components of system 100 may
each run on a computer, server, storage device or other
processing platform element. A given such element may be
viewed as an example of what is more generally referred to
herein as a “processing device.” The cloud infrastructure
1000 shown in FIG. 10 may represent at least a portion of
one processing platform. Another example of such a pro-
cessing platform is processing platform 1100 shown in FIG.
11.

The processing platform 1100 in this embodiment com-
prises a portion of system 100 and includes a plurality of
processing devices, denoted 1102-1, 1102-2, 1102-3, . . .
1102-K, which communicate with one another over a net-
work 1104.

The network 1104 may comprise any type of network,
including by way of example a global computer network
such as the Internet, a WAN, a LAN, a satellite network, a
telephone or cable network, a cellular network, a wireless
network such as a WiFi or WiIMAX network, or various
portions or combinations of these and other types of net-
works.

The processing device 1102-1 in the processing platform
1100 comprises a processor 1110 coupled to a memory 1112.
The processor 1110 may comprise a microprocessor, a
microcontroller, an application-specific integrated circuit
(ASIC), a field-programmable gate array (FPGA), a central
processing unit (CPU), a graphical processing unit (GPU), a
tensor processing unit (TPU), a video processing unit (VPU)
or other type of processing circuitry, as well as portions or
combinations of such circuitry elements.

The memory 1112 may comprise random access memory
(RAM), read-only memory (ROM), flash memory or other
types of memory, in any combination. The memory 1112 and
other memories disclosed herein should be viewed as illus-
trative examples of what are more generally referred to as
“processor-readable storage media” storing executable pro-
gram code of one or more software programs.

Articles of manufacture comprising such processor-read-
able storage media are considered illustrative embodiments.
A given such article of manufacture may comprise, for
example, a storage array, a storage disk or an integrated
circuit containing RAM, ROM, flash memory or other
electronic memory, or any of a wide variety of other types
of computer program products. The term “article of manu-
facture” as used herein should be understood to exclude
transitory, propagating signals. Numerous other types of
computer program products comprising processor-readable
storage media can be used.
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Also included in the processing device 1102-1 is network
interface circuitry 1114, which is used to interface the
processing device with the network 1104 and other system
components, and may comprise conventional transceivers.

The other processing devices 1102 of the processing
platform 1100 are assumed to be configured in a manner
similar to that shown for processing device 1102-1 in the
figure.

Again, the particular processing platform 1100 shown in
the figure is presented by way of example only, and system
100 may include additional or alternative processing plat-
forms, as well as numerous distinct processing platforms in
any combination, with each such platform comprising one or
more computers, servers, storage devices or other processing
devices.

For example, other processing platforms used to imple-
ment illustrative embodiments can comprise converged
infrastructure.

It should therefore be understood that in other embodi-
ments different arrangements of additional or alternative
elements may be used. At least a subset of these elements
may be collectively implemented on a common processing
platform, or each such element may be implemented on a
separate processing platform.

As indicated previously, components of an information
processing system as disclosed herein can be implemented at
least in part in the form of one or more software programs
stored in memory and executed by a processor of a process-
ing device. For example, at least portions of the functionality
of one or more elements of the controller failure prediction
platform 110 as disclosed herein are illustratively imple-
mented in the form of software running on one or more
processing devices.

It should again be emphasized that the above-described
embodiments are presented for purposes of illustration only.
Many variations and other alternative embodiments may be
used. For example, the disclosed techniques are applicable
to a wide variety of other types of information processing
systems and controller failure prediction platforms. Also, the
particular configurations of system and device elements and
associated processing operations illustratively shown in the
drawings can be varied in other embodiments. Moreover, the
various assumptions made above in the course of describing
the illustrative embodiments should also be viewed as
exemplary rather than as requirements or limitations of the
disclosure. Numerous other alternative embodiments within
the scope of the appended claims will be readily apparent to
those skilled in the art.

What is claimed is:

1. A method comprising:

collecting data corresponding to operation of a plurality of

controllers from one or more devices;

predicting, using one or more machine learning algo-

rithms, at least one of degradation and failure of one or
more controllers of the plurality of controllers based, at
least in part, on the data corresponding to the operation
of the plurality of controllers;

identifying, using the one or more machine learning

algorithms, one or more corrective actions to prevent
the at least one of the degradation and the failure of the
one or more controllers;

generating instructions comprising the one or more cor-

rective actions, wherein the instructions are transmitted
to at least one user device;

wherein the data corresponding to the operation of the

plurality of controllers comprises historical data and
live data;



US 12,141,045 B2

17

wherein the one or more machine learning algorithms are

trained with at least a portion of the historical data;
wherein the predicting comprises classifying at least a
portion of the data corresponding to the operation of the
plurality of controllers as critical, the classifying com-
prising using the one or more machine learning algo-
rithms to identify one or more patterns for performance
metric changes reaching a criticality level; and

validating an accuracy of the one or more machine
learning algorithms by testing the one or more machine
learning algorithms with testing data comprising a
subset of the historical data and a subset of the live
data;

wherein the steps of the method are executed by a

processing device operatively coupled to a memory.

2. The method of claim 1 wherein:

the data corresponding to the operation of the plurality of

controllers comprises unstructured data; and

the method further comprises structuring and categorizing

the unstructured data.
3. The method of claim 1 wherein the predicting is based,
at least in part, on at least a portion of the live data.
4. The method of claim 1 wherein the plurality of con-
trollers comprise at least one of a storage controller, a
network controller and a host bus adaptor controller.
5. The method of claim 1 wherein:
the data corresponding to the operation of the plurality of
controllers comprises a plurality of log entries; and

the predicting further comprises analyzing the plurality of
log entries to classify one or more of the plurality of log
entries as critical.
6. The method of claim 5 wherein the analyzing of the
plurality of log entries comprises identifying the one or more
patterns for performance metric changes in at least a portion
of the plurality of log entries, wherein the one or more
patterns for performance metric changes correspond to
changes in one or more performance metrics of at least a
portion of the plurality of controllers.
7. The method of claim 6 wherein the one or more
performance metrics comprise at least one of input-output
operations per second (IOPS), throughput and latency.
8. The method of claim 5 wherein the analyzing of the
plurality of log entries comprises identifying one or more
anomalous events in at least a portion of the plurality of log
entries.
9. The method of claim 8 wherein the analyzing of the
plurality of log entries further comprises identifying com-
mon anomalous events of the one or more anomalous events
in multiple ones of the plurality of log entries.
10. The method of claim 5 wherein the analyzing of the
plurality of log entries comprises extracting and decoding
one or more error signatures from at least a portion of the
plurality of log entries.
11. The method of claim 5 wherein the analyzing of the
plurality of log entries comprises identifying one or more
devices corresponding to at least a portion of the plurality of
controllers.
12. The method of claim 1 wherein the one or more
machine learning algorithms comprise a random forest
machine learning algorithm.
13. The method of claim 1 wherein:
the data corresponding to the operation of the plurality of
controllers comprises a plurality of log entries; and

the predicting comprises analyzing the plurality of log
entries using at least one of natural language processing
and image analysis.
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14. An apparatus comprising:

a processing device operatively coupled to a memory and

configured:

to collect data corresponding to operation of a plurality of

controllers from one or more devices;

to predict, using one or more machine learning algo-

rithms, at least one of degradation and failure of one or
more controllers of the plurality of controllers based, at
least in part, on the data corresponding to the operation
of the plurality of controllers;

to identify, using the one or more machine learning

algorithms, one or more corrective actions to prevent
the at least one of the degradation and the failure of the
one or more controllers;

to generate instructions comprising the one or more

corrective actions, wherein the instructions are trans-
mitted to at least one user device;

wherein the data corresponding to the operation of the

plurality of controllers comprises historical data and
live data;

wherein the one or more machine learning algorithms are

trained with at least a portion of the historical data;

wherein the predicting comprises classifying at least a

portion of the data corresponding to the operation of the
plurality of controllers as critical, the classifying com-
prising using the one or more machine learning algo-
rithms to identify one or more patterns for performance
metric changes reaching a criticality level; and

to validate an accuracy of the one or more machine

learning algorithms by testing the one or more machine
learning algorithms with testing data comprising a
subset of the historical data and a subset of the live data.
15. The apparatus of claim 14 wherein:
the data corresponding to the operation of the plurality of
controllers comprises a plurality of log entries; and

in predicting, the processing device is further configured
to analyze the plurality of log entries to classify one or
more of the plurality of log entries as critical.

16. The apparatus of claim 15 wherein, in analyzing of the
plurality of log entries, the processing device is configured
to identify the one or more patterns for performance metric
changes in at least a portion of the plurality of log entries,
wherein the one or more patterns for performance metric
changes correspond to changes in one or more performance
metrics of at least a portion of the plurality of controllers.

17. The apparatus of claim 16, wherein the one or more
performance metrics comprise at least one of input-output
operations per second (IOPS), throughput and latency.

18. An article of manufacture comprising a non-transitory
processor-readable storage medium having stored therein
program code of one or more software programs, wherein
the program code when executed by at least one processing
device causes said at least one processing device to perform
the steps of:

collecting data corresponding to operation of a plurality of

controllers from one or more devices;

predicting, using one or more machine learning algo-

rithms, at least one of degradation and failure of one or
more controllers of the plurality of controllers based, at
least in part, on the data corresponding to the operation
of the plurality of controllers;

identifying, using the one or more machine learning

algorithms, one or more corrective actions to prevent
the at least one of the degradation and the failure of the
one or more controllers;

generating instructions comprising the one or more cor-

rective actions, wherein the instructions are transmitted
to at least one user device;
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wherein the data corresponding to the operation of the
plurality of controllers comprises historical data and
live data;

wherein the one or more machine learning algorithms are

trained with at least a portion of the historical data; 5
wherein the predicting comprises classifying at least a
portion of the data corresponding to the operation of the
plurality of controllers as critical, the classifying com-
prising using the one or more machine learning algo-
rithms to identify one or more patterns for performance 10
metric changes reaching a criticality level; and
validating an accuracy of the one or more machine
learning algorithms by testing the one or more machine
learning algorithms with testing data comprising a
subset of the historical data and a subset of the live data. 15

19. The article of manufacture of claim 18 wherein:

the data corresponding to the operation of the plurality of

controllers comprises a plurality of log entries; and

in predicting, the program code further causes said at least

one processing device to analyze the plurality of log 20
entries to classify one or more of the plurality of log
entries as critical.

20. The article of manufacture of claim 19 wherein, in
analyzing of the plurality of log entries, the program code
causes said at least one processing device to identify the one 25
or more patterns for performance metric changes in at least
a portion of the plurality of log entries, wherein the one or
more patterns for performance metric changes correspond to
changes in one or more performance metrics of at least a
portion of the plurality of controllers. 30
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