
III III IIII
US005577188A

United States Patent (19) 11 Patent Number: 5,577,188.
Zhu (45) Date of Patent: Nov. 19, 1996

54 METHOD TO PROVIDE FOR VIRTUAL 57) ABSTRACT
SCREEN OVERLAY a The present invention in the form of a computer software

75) Inventor: Min Zhu, Los Altos, Calif. program provides for a method for annotating over static
images or annotating over active application programs. In

(73) Assignee: Future Labs, Inc., Los Altos, Calif. the case of static images, user-created objects can be created,
manipulated and placed over static images. In the case of

21 Appl. No.: 252,791 annotating over application programs in a structured system
environment such as in a windows environment, an overlay

22 Filed: May 31, 1994 program embodying the present invention provides an over
I51) Int. Cl. G06F 3/14 laying method allowing the user to switch back and forth
52 U.S. Cl. ... 395/326; 395/339 between the active application programs and the overlay
58 Field of Search 395/157, 160, program. When the overlay program has control, a screen

395/161, 158, 164, 650; 34.5/201; 364/419.1 size, transparent window is created and annotations are
created in this window. This transparent window allows the

(56) References Cited user to see the application programs on the screen. Thus,
U.S. PATENT DOCUMENTS when creating annotations on this window, a visual percep

tion is created that the annotations are on the images
5,047,760 9/1991 Trevett et al. 345/201 displayed by the application programs. When the user fin
5,146,592 9/1992 Pfeiffer et al. 395/157 ishes annotating, the user can switch back to the active
5,231,578 7/1993 Levin et al. 364/419.1 application programs with the option to hide the annotations
5,245,702 9/1993 McIntyre et al. 3/9 or to display the annotations over the active application
5,432,932 7/1995 Chen et al. 395/650 programs

Primary Examiner-Mark R. Powell
Assistant Examiner-Ruay Lian Ho
Attorney, Agent, or Firm-Claude A. S. Hamrick; Emil C.
Chang 24 Claims, 8 Drawing Sheets

Lezy Summer

Afternoon

18

19

20

21

22

gzSumer
Afternoon

U.S. Patent

1 O

Layer 1

APPLICATION

Layer 2

ANNOTATON

Layer 3

POINTER
OBECTS

Fig. 1A

Nov. 19, 1996 Sheet 1 of 8 5,577,188

16

Lezy Summer

Afternoon

18

19

20

21

22

(gz)Summer
Afternoon

Fig. 1B

U.S. Patent Nov. 19, 1996 Sheet 2 of 8

USERRUNS
PROGRAMAND
MPORTS STATIC

IMAGE(S)

USER SELECTS
POINTER OBJECT,
OR SELECTS

OBJECT TYPE AND
CREATES AN
OBJECT

DETERMINE THE
LAYER FOR THE

OBJECT

NSERT OBJEC
NTO LAYER

STORAGE AREA

RE-DRAW
OVERLAPPNG

OBJECTS IN UPPER
LAYERS(S)

FIG. 2

24

26

28

30

32

5,577,188

U.S. Patent Nov. 19, 1996 Sheet 3 of 8 5,577,188

34 36

ra
LAYER 1 MAGE ni

40 42 44 46

ANNOTA- ANNOTA- ANNOTA
TION TION TION ni

OBJECT OBJECT OBJECT

48 50 52

54

PONTER
OBJECT

PONTER
OBJECT ni

Fig. 3

U.S. Patent Nov. 19, 1996 Sheet 4 of 8 5,577,188

68

) OES TH
NEW OBECT

OVERLAP WITH THE
STORED
OBJECT?

S THE
CURRENT

LAYER THE TOP
LAYER2

RE-DRAW
OVERLAPPNG AREA
OF THE STORED
OBJECT TO THE

SCREEN
ADVANCE THE

CURRENT LAYERTO
THE NEXT LAYER

READ THE NEX
STORED OBJECT
FROM THE LAYER
STORAGE AREA

READ THE STORED
OBJECTS

COORDNATES

U.S. Patent

APPLICATION
PROGRAM(S)

WINDOWS

DISPLAY DRIVER

SCREEN

Fig. 5A

Nov. 19, 1996 Sheet 5 of 8 5,577,188

8O 81

OVERLAY
PROGRAM

APPLICATION
PROGRAM(S)

83

DYNAMIC
NKING

LIBRARY

WINDOWS

VIRTUAL DISPLAY
DRIVER

DISPLAY DRIVER

88

SCREEN

Fig. 5B

U.S. Patent Nov. 19, 1996 Sheet 6 of 8 5,577,188

90
1 OO

APPLICATION

DOS DRIVERS

OVERLAY PROGRAM

SCREEN

Fig. 6B

92

94

APPLICATION

96
-

98

/
104

SCREEN

106

Fig. 6A

U.S. Patent Nov. 19, 1996 Sheet 7 of 8 5,577,188

110
START OVERLAY
PROGRAMAND
APPLICATION 120 USER SELECTS
PROGRAMS POINTER OBJECT,

OR USER SELECTS
OBJECT TYPE AND
CREATES OBJECT

USERACTIVATES 112
APPLICATION

SHARNG FUNCTION 122
OF THE OVERLAY

PROGRAM ' NSERT OBJECT
NTO LAYER

STORAGE LINKLIST

114

USER SWITCHESTO
APPLICATION 124
SHARENGMOOE RE-DRAW

OVERLAPPING
OBJECTS NUPPER

LAYER(S)
118

APPLICATION
SHARNG PROGRAM
CREATES A SCREEN- 126
SIZE, TRANSPARENT

WINDOW
USER SWITCHESTO
LIVE APPLICATION
MODE, APPLICATION
SHARNG PROGRAM
CLOSES WINDOW,

DRAWS
ANNOTATION

OBJECTS OVER LIVE
FIG 7 APPLICATION

PROGRAMS, AND
RELEASES

PROGRAM CONTROL

U.S. Patent Nov. 19, 1996 Sheet 8 of 8 5,577,188

USER UPDATES
CONTENTS OF LIVE

APPLICATION
PROGRAMS AND
WINDOWS MAKES
CALL TO WIRTUAL
DISPLAY DRIVERTO
UPDATE SCREEN

CONTENTS

130

134

VIRTUAL DISPLAY
DRIVER CALS

OSPLAY DRIVERTO
UPDATE SCREEN

CONTENTS

WRTUAL OSPLAY 136
DRIVER CHECKS
FLAG N DYNAMC
LINK LIBRARY. F

THE FLAGS SET TO
ON, COORDINATES
OF THE SCREEN
UPDATES ARE

SAVED IN DYNAMIC.
NK BRARY.

WNDOWSSYSTEM
SSUES OLE

MESSAGE AND
OVERLAY PROGRAM
READS SCREEN
COORONATES

FROM THE DYNAMIC
LINK LIBRARY.

OVERLAY PROGRAM
CHECKS FOR

OVERAPPING AND
REDRAWS THE
ANNOTATIONS F
NECESSARY.

38

Fig. 8

5,577,188
1.

METHOD TO PROVIDE FOR VIRTUAL
SCREEN OVERLAY

BACKGROUND OF THE INVENTION

1. Field of the Invention
This invention generally relates to displaying of objects

on a computer screen and more particularly to a method of
organizing and displaying user created or imported objects
over active application programs or static images.

2. Background of the Invention
Whenever two or more people are involved in the prepa

ration of a document, whether it be a financial spread sheet,
a CAD design, a circuit schematic layout, an organization
report, a bit map image, etc., succeeding drafts of the
document are prepared, circulated, modified in the process.
Each person annotates his or her remarks on the document
and forwards it to the next person. Typically, several drafts
of the document will be circulated before a final draft is
produced, and this is a very time consuming process.

In the case where a person involved in this document
preparation process is at a different geographical location,
getting the document from one location to another location
and back becomes another tedious and time consuming task.
The document will either have to be mailed or faxed to that
person, further complicating the entire process.
One standard method to alleviate this process is to hold

meetings where everyone gathers and comments on the
document with the hope to reduce the number of drafts
needed before a final draft is produced. The shortcoming
with this method is that there may be significant travel time
and travel cost in getting all of the people to the same
location. In addition, the final draft of the document usually
is again circulated for final comments.
One solution to solve this problem is to use a teleconfer

encing software program, an aspect of which contains an
embodiment of the present invention. By using computer
network connections or modem connected phone lines,
everyone can be connected via his or her computer. By using
the teleconferencing software program, everyone's com
puter screen displays the same document. In addition to
using the software program and network or modem connec
tions, conference calling over the voice phone lines or
through the software program creates a dynamic and live
atmosphere where everyone can participate in the discussion
and refer to the document displayed on the screen. When
referring to the document, the ability to annotate the docu
ment on the computer screen becomes important. It is
desirable to allow each person to use his or her own pointer
to specifically point to, circle, or highlight an area of the
document. Each pointer differentiated by color, pattern,
shape or otherwise to indicate the person who is making the
suggestion for the modification. Each person is allowed to
create a line, an arrow, a circle, a highlight, to insert an
object, or to create or import images. These created or
imported objects can be saved in a file for later use or for
documentation purposes. Furthermore, any suggestion for
modification to the document can be immediately inserted
and calculated by the application program with new results
displayed on the screen for further discussion. In this man
ner, the final version of the document is prepared in a much
shorter period of time and in an efficient and dynamic way.
The problem presented in this scenario and the solution

provided by the present invention is in the annotation of the
image on the computer screen, particularly in annotating
over active application programs. It is desirable to annotate

O

15

20

25

30

35

45

50

55

60

65

2
over static images or active application programs in the
discussion with other users.

Typically, when running a computer application program
such as a word processor, a spreadsheet program, or other
types of program, the application program interacts with the
computer hardware to display information on the computer
screen to the user. The user, reading from the screen, inputs
data or commands via input devices such as a keyboard or
a mouse to have the application program do certain tasks.
Usually, the application program controls and occupies the
entire screen. The user has to use the application program in
order to make any changes to the content of the screen.

If the application program does not allow the desired type
of modification to the screen, that modification cannot be
made. For example, in using a word processor such as a Disk
Operation System ("DOS") version of WordPerfect word
processor from WordPerfect Corporation, the user can type
in lines of text but the user cannot highlight words or phrases
by circling or marking it with different colors. Similarly,
when running an application program in a windows-type
environment such as in the environment provided by
Microsoft Windows from Microsoft Corporation, the appli
cation program controls the part of the screen its window
occupies. The user can only modify the content of the screen
controlled by the application program in the manner allowed
by the application program. For example, using a Microsoft
Windows version rather than a DOS version of WordPerfect
word processor in Microsoft Windows, the WordPerfect
window size can be modified but the content in the Word
Perfect window is still controlled by the WordPerfect word
processor. Any changes to the content of the WordPerfect
window must be allowed by the WordPerfect word proces
sor. Thus, in the situation described above where multiple
users wish to annotate over the screen controlled and occu
pied by active application programs, there is a need for a
method to overlay objects on the screen over active appli
cation programs in an organized manner.

In the case of a static image, such as a bitmap image, an
Object Linking & Embedding object, or a metafile object is
pulled up on the screen for discussion and annotation, there
is no application program running, but there is still a desire
to keep the annotations separate from the actual image.

Thus, there is a need for a method to provide for virtual
screen overlay in this case as well.

SUMMARY OF THE INVENTION

It is therefore an object of this invention to provide a
method for organizing and accessing screen presentation to
a computer display.

It is a further object of the invention to provide for a
method to display annotation on top of active application
programs or static images on a computer screen.

In the present invention, objects are organized according
to their type and are placed in layers where the layers are
stacked one on top of another and displayed on the screen.
Whenever an object is created or modified and drawn to the
screen, objects in layers above the newly created object are
checked for overlapping and re-drawn if necessary. Thus, the
objects in the top-most layer are always shown in their
entirety. With this layered structure, objects can be easily
organized and manipulated.
An embodiment of the present invention in the form of a

computer software program, hereinafter referred to as the
overlay program, will have to deal with two cases: annotat
ing over static images or annotating over active application

5,577,188
3

programs. In the case of static images, objects can be
created, manipulated and placed over static images. In the
case of annotating over application programs in a structured
system environment such as windows-type system, after
starting application programs and the overlay program, the
user can switch back and forth between the application
programs and the overlay program. When the overlay pro
gram has control, a screen-size, transparent window is
created and objects are created in this window. This trans
parent window will allow the user to see the application
programs on the screen. Thus, when creating objects on this
window, a visual perception is created that the annotations
are on the screen contents as displayed by the application
programs. The transparent window is preferrable in order to
allow the user full access and interaction with the underlying
windows system and in interacting with the underlying
computer software and hardware, just like any other appli
cation programs. When the user finishes the annotation, the
user can switch back to the application programs with the
option to hide the annotations or to display the annotations
over the live application programs. In using the application
programs, the application programs will issue commands to
update the screen content. If the annotations are still on the
screen, these commands are redirected to a virtual display
driver. The virtual display driver will carry out the screen
updates by calling the standard display driver as requested
by the application programs, and it will work with the
overlay program to check for overlapping of the screen
updates with the displayed annotations. The annotations will
be redrawn if there are overlapping areas between the
annotation objects and the screen updates.
When the user again switches to the overlay program, the

transparent window is again created and the objects are
placed on this transparent window. New objects can be
created on this window and all the objects can be fully
manipulated. By this method, the user can make annotations
for other users to see. At the same time, the user can update
any suggested changes immediately by using the application
program. Other users can comment on the revisions and
suggest further changes.
The word "object' in this application collectively refers to

annotation object and pointer object.
A transparent window is the preferrable method in this

invention. However, other methods to create the results
obtained from using a transparent window is also within the
present invention.

General references of the subject matters discussed in this
application can be found in reference materials such as
Microsoft Windows 3.1, vol. 1-4, Mircosoft Press, 1992,
and Microsoft Visual CH, Development System for Win
dows, Version 1.0, Microsoft Corporation, 1993.
These and other objects and advantages of the present

invention will no doubt become apparent to those skilled in
the art after having read the following detailed description of
the preferred embodiment which is illustrated in the several
figures of the drawing.

IN THE DRAWING

FIG. 1A is an illustration of the three layer structure used
to Organize objects created or imported by the user in the
preferred embodiment of the present invention.

FIG. 1B is an illustration of an example of the use of the
three layer structure and the final visual image displayed on
the computer screen.

10

15

20

25

30

35

45

50

55

60

65

4
FIG. 2 shows the method steps in creating annotations or

pointer objects over static images.
FIG. 3 illustrates an example of using link lists to store

images and objects.
FIG. 4 shows the method steps in checking for overlap

ping of objects in the different layers and redrawing the
overlapped object, if necessary.

FIG. 5A shows the software layer structure in a structured
system environment such as in window-type system envi
ironment.

FIG. 5B shows the modification to the software layer
structure when the overlay program is running in an struc
tured system environment.

FIG. 6A shows the software layer structure in an unstruc
tured system environment.

FIG. 6B shows the modification to the software layer
structure when the overlay program is running under an
unstructured system environment.

FIG. 7 illustrates the method steps in the case of anno
tating over application programs while in the application
sharing mode.

FIG. 8 illustrates the method steps in the case of anno
tating over application programs while in the live applica
tion mode.

DETALED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

In the present invention, the screen is conceptually
divided into several layers, with one layer on top of another
layer. In the preferred embodiment, referring to FIG. 1A,
there are three layers. The first layer 10 is the application
program layer, the second layer 12 is the annotation object
layer, and the third layer 14 is the pointer object layer. The
third layer is on top of the second layer and both of these
layers are on top of the first layer. In FIG. 1B, the first layer
16 shows an example of a simplified screen of a word
processor and the word processor displaying lines of text,
the first line of text containing a misspelled word "Lezy'
when it should be "Lazy'. The second layer 18 shows
annotation on part of that text, circling the misspelling. The
third layer 20 shows two pointers objects created to point to
the document. Here, it is pointing to the misspelled word.
When all three layers are stacked on top of each other, the
user sees a computer screen 22 showing the lines of text with
the misspelled word, the annotation over the misspelled
word, and one of the pointer objects pointing to the mis
spelled word. By organizing the presentation of the screen
display in this manner, annotations can be easily created and
manipulated.

Note, although the preferred embodiment has three layers,
additional layers can be easily added. One example of where
an additional layer may be useful is when an outline from a
lowest resolution computer monitor is displayed on a higher
resolution computer monitor. Another example is where a
grid is placed on the screen to assist the user in aligning
objects.

Also, although the DOS system and the Microsoft Win
dows program are used as examples herein, it shall be
understood that this invention is applicable to any computer
operating system platform, including SUN/OS from Sun
Corporation, OS/2 from IBM Corporation, Window NT
from Microsoft Corporation, or any others. It also shall be
understood that this invention can be programmed in any
programming language.

5,577,188
S

Note that users may be located at different geographical
locations, but every user's computer screen will display the
same objects no matter who created the objects. Each user
may create a pointer object or annotation objects. It is not
within the scope of the present invention to discuss trans
ference of objects from one user to other users such that each
user's computer screen displays the same thing.
An embodiment of the present invention in the form of a

computer software program, hereinafter referred to as the
overlay program, will have to deal with two cases. In the first
case, a static image such as a bit map image, a metafile
vector image, O.L.E. objects, or a text based image is
imported and displayed on the screen and the user annotates
on top of this static image. In the second case, the user starts
one or more application programs and the overlay program,
and the overlay program allows annotations on top of the
application programs.
I. Overlaying Static Images

In the first case, referring to FIG. 2, when the user starts
the overlay program, a window is created and a default
object type, such as the pen type, is provided. The user can
use the pen, the movement of which is controlled via the
mouse, to move around the screen and click on icons. The
user can click on an icon to import one or more images and
display them on the screen 24. The user can create annota
tion objects on the images with the pen, or select another
annotation object type to annotate with. The user can also
select a pointer object to point to the images. Note that
created annotations and pointer objects appear on every
user's screen. A selected annotation object type such as the
pen mentioned above only appears on that user's screen
although it can be moved around as well. When the pen
creates an object, that object is displayed to all the screens.
Once the image is on the screen, the user can create a

pointer object to point to area of the image. By using the
pointer object its movement controlled via amouse, the user
can point to different areas of the image and make his or her
presentation accordingly over the phone with conference
calling while other users viewing the screen listen. Other
users may also create pointer objects and make presentations
as well. The pointer objects can be differentiated by colors
or patterns to allow listeners to identify which user is using
which pointer object.
The user may create annotation objects by first selecting

the annotation object type (or use the default annotation
object type) to annotate over the image. Annotation object
types include highlights, boxes, circles, lines, arrows, text
input, and etc. Selection of annotation object type is made by
the user clicking on the icon representing the desired anno
tation object type. Once the annotation object type is
selected, the user can create an annotation by moving to the
desired part of the images to annotate, click and hold down
on the mouse button, drag the mouse for the desired anno
tation, shape or size and release the mouse button to end the
annotation 26. An annotation is thus created.
When the mouse button is clicked and held down, the

coordinates of the mouse movement is recorded until the
mouse button is released. This recorded information repre
sents the annotation object and is stored in the proper storage
location,

Every object is assigned to a layer according to its type.
The first layer includes all the imported images. The user
may import and display one or more images on to the screen
and these images are assigned to the first layer. The second
layer includes all the annotation objects. Whether it be a
highlight over a sentence or a circle over a word, all of these
objects are assigned to the second layer. The third layer

10

15

20

25

30

35

40

45

50

55

60

65

6
includes all the pointer objects. The pointer objects created
by the users to point to the image is always assigned to the
third layer.

Once the object is created, it is stored into the correspond
ing layer storage area 30. After the object is stored, any
existing upper-layer objects overlapping on the screen with
the just created object are re-drawn on the screen 32. For
example, if a pointer object is created first and a circle
annotation is created later, because the pointer object is at a
higher layer than the layer for the circle annotation, the
circle annotation is checked for overlapping with the pointer
object. After the circle annotation is drawn to the screen, the
overlapping part of the pointer object with the circle anno
tation, if any, will be redrawn to the screen. It shall be
understood that the coordinates of any pointer objects are
updated constantly. This completes the method step for a
static image. The storage method and the redrawn process is
described in detail below.

Referring to FIG. 3, the preferred storage method for the
objects is explained. Although there are a number of ways to
store data, the preferred storage method is to utilize link lists.
FIG. 3 demonstrates one way of storing objects using link
lists. There is a first layer pointer 34 pointing to a location
36 that contains information describing the image and
information regarding a next pointer pointing to the next
image, if any. In this case, there is only one image and the
next pointer points to nil 38 (end of list). There is a second
layer pointer 40 pointing to a location 42 that contains
information describing an object and a next pointer. The next
pointer here points to another location that contains infor
mation describing another object and another next pointer.
This list contains three objects. Similarly, there is a third
layer pointer 48 pointing to a location containing informa
tion describing a pointer object and a next pointer. Here,
there are two pointer objects in this list.

For all layers, a new object or image is always inserted at
the end of each layer's link list. So, a new pointer object (a
third layer object) just created will be inserted between
pointer object 52 and nil 54. The concept, practice, and
manipulation of link lists can be found in books describing
programming methods or the 'C' programming language.
Once annotation objects are created, it can be individually

selected and modified or erased. More specifically, a
selected annotation object can be partially erased by the user
Selecting an eraser and clicking down and dragging the
eraser over the annotation object. The annotation object can
be entirely deleted or moved to a new location. In the case
where a stored object is selected and modified or moved, the
object can either stay in its place in the link list or be inserted
at the end of the link list. The creation, selection, modifi
cation, or deletion of objects in general are commonly
known in the art.
Now referring to FIG. 4, the method of re-drawing

overlapping objects in upper layer(s) (FIG. 2, part 32) is
explained. Once the newly created object is inserted into the
link list, the current layer is the layer number of the newly
created object and the overlay program checks if the current
layer is the top layer 56. If the current layer is the top layer,
there is no layer above and this step is finished 58. If the
current layer is not the top layer, the next layer becomes the
current layer 60, and the content of the location pointed to
by the layer pointer is read 62. The layer link list is empty
when a "nil' indicator signifying the end of the link list is
read, and the program flows to the top layer test 56. If the
link list is not empty, the screen coordinates of the stored
object is read 66 and compared with the screen coordinates
of the new object 68. If there are overlapping areas, the

5,577,188
7

overlapping areas of the stored object is drawn to the screen
70. Otherwise, the next object, if any, is read 62.

This process continues until all stored objects in the
layer(s) above the newly created object are checked for
overlapping and re-drawn if necessary. The effect of this
process is that the user will see annotations in chronological
order, the later marks on top of earlier marks, with pointer
objects on the very top. If a stored object is selected and
modified, objects on the same layer created after the selected
object are checked for overlapping and redrawn if necessary.
Here the current layer is the layer of the selected object, and
the checking step will begin with box 62.
II. Overlaying Active Application

In this case, the user starts the overlay program and one
or more application programs, and annotations can be made
on the screen displayed and controlled by the application
programs. In this situation, an application program such as
a spread sheet program can be running a mortgage calcula
tion and users can point to cells or annotate areas of the
spread sheet for modifications or insertions. Suggestions for
modifications can be immediately inserted into the spread
sheet program, and the spread sheet program can recalculate
the mortgage calculation with the new information and
display the new results for everyone to consider. If results
are not favorable, there can be another round of discussion
for modification to the spread sheet.

A. Structured System Programming Environment
Before proceeding to the discussion of the method in

overlaying active application programs, the software layers
in a structured system programming environment are
explained. Referring to FIG. 5A and 5B, in starting the
overlay program and one or more application programs, the
software layers in a structured system programming envi
ronment are modified. FIG. 5A depicts the software layers in
a structured system environment such as in a windows type
environment, an example of which is the Microsoft Win
dows program. In this environment, a running application
program 72 interfaces with input and output devices strictly
through the windows system environment 74. When the
application program requests windows to write a character
to the screen, windows in turn directs a display driver to
write the character to the screen. A driver such as a display
driver is a software program written specifically to handle a
specific equipment or a specific type of equipment. For
example, there are several standards of display resolution
with computer monitors and a display driver is needed for
each standard in order to control and interface with each type
of monitor. The display driver tells the monitor 78 specifi
cally how to write the character on the screen. For example,
in an application program such as a word processor running
on top of windows, when the user inputs a character 'a'
from the keyboard and when the word processor receives the
character 'a' as input, the word processor will display the
character "a" on the screen at the right place to reassure the
user that he or she has input a character "a". To write the
character "a" to the screen, the word processor calls a
windows write-to-screen routine, specifying the character
"a" and the location on the screen to place the character. The
windows routine in turn calls the display driver with the
given information, and the display driver specifically tells
the computer screen the placement of dots on the screen to
compose the visual image resembling the character "a'.

In activating the overlay program, referring to FIG. 5B,
the software layer structure is modified. The windows' call
to the display driver is redirected to a virtual display driver
84. The virtual display driver is part of the overall overlay
program.

0

15

20

25

30

35

40

45

50

55

60

65

8
Redirection of the display driver to the virtual display

driver is accomplished by renaming the display driver file
name to a predefined file name and naming the virtual
display driver to the display driver's original name. When
windows calls the display driver via its name, it is calling the
virtual display driver rather than the display driver. The
virtual display driver will be able to call the display driver
through its predefined name.
The virtual display driver calls the display driver with the

information to place on the screen as requested by the word
processor. In addition, the virtual display driver will report
coordinates of the screen updates to the overlay program via
the dynamic linking library. When the screen updates are
finished, the overlay program will read the coordinates
stored in the dynamic link library, check for overlapping
screen objects, and re-draw the annotation objects if neces
sary.
More specifically, in a windows-type environment such as

in Microsoft Windows, there is a message queue to place all
the unprocessed tasks. When all the tasks in the queue are
processed, Windows issues an idle message to all the appli
cation programs in Windows. When the overlay program
receives this message, it has program control and it checks
the dynamic link library. If there are coordinates of the
screen updates placed there by the virtual display driver, it
reads those coordinates and checks for overlapping. If there
is overlapping on the annotation objects, redrawing of the
screen is then necessary. Before redrawing, the overlay
program first sets a flag in the dynamic link library to inform
the virtual display driver not to write coordinates of the
annotations to the dynamic link library. When it finishes
redrawing the annotations, the overlay program resets the
flag in the dynamic link library to inform the virtual display
driver to start saving screen update coordinates again. This
process is fully explained below in Section C.

B. Unstructured System Programming Environment
Referring to FIG. 6A, in an unstructured system program

ming environment such as usually the case under the DOS
environment, in writing to the screen the application pro
gram 90 can either call a DOS screen driver 92 or write
directly to the screen 94. If the application program calls a
DOS screen driver 96, the DOS screen driver in turn directs
the screen to display the desired image. In this environment,
by activating the overlay program, referring to FIG. 6B, the
overlay program 104 catches all the write commands to the
screen and checks for overlapping situation and re-draws the
screen if necessary, or it can update the display memory on
a regular basis.
The preferred programming environment is the structured

system programming environment described in section A
above. Although the present invention can be implemented
in an unstructured system programming environment just
described, the processing speed of the resulting embodiment
program may be unsatisfactory relative to the processing
speed obtained from an embodiment program in a structured
programming environment.

C. Annotation Over Active Application Program-Appli
cation Sharing Mode
Now referring to FIG. 7, when the user starts the overlay

program, the user can work with static images or active
application programs. To work with active application pro
grams, the user must initiate the application sharing function
of the overlay program 112. When the application sharing
function is activated, the software layer structure is modified
as described in the above sections. After the application
sharing function is activated, the user is now able to switch
back and forth between two modes, the live application

5,577,188
9

mode and the application sharing mode. In the live appli
cation mode, the user will be able to interact with the
application programs in the normal manner. In the applica
tion sharing mode, the user will be able to annotate on the
SCCC.

In order to place annotations on top of the screen as
displayed by the application programs, the user switches to
the application sharing mode 114 to transfer program control
to the application sharing program, which is part of the
overall overlay program. The user can switch to the appli
cation sharing mode by clicking on an icon in a tool bar
provided on the screen by the overlay program or by a
hot-key-sequence. The preferred method is to provide a tool
bar on screen, the tool bar containing several icons.
When the application sharing program is activated 116, it

creates a screen-size, transparent window to overlay the
entire screen 118. The transparent window exists as work
space for the application sharing program. Like in the static
image case, the window will provide a number of visible
icons to allow the user control and use of the program, icons
that allow creation of pointer objects, annotation objects, or
importing of static images. Furthermore, the user has the
option to capture the screen content displayed by the appli
cation programs, convert it to a bit map image, and save it
in a file along with any annotations. Note that the transparent
window is like any other window that may be created under
a windows-type system environment. The only difference is
that it has a transparent background. Under Microsoft Win
dows, the create-window-extended function is used.
By creating a window, the underlying windows system

provides full range of support to the overlay program like
any other application program running in the windows
system. Typically, when a window is created, it is in the
foreground and it covers up other windows. Here because a
transparent window is created, the user still can see the
content of the underlying application programs. At the same
time, the user can create annotations over the application
programs. -

Once the application sharing program is activated, user
interaction with the application sharing program is similar to
user interaction in the static image case as described in Part
I above. The user may create a pointer object 120 to move
and point to various areas of the document in his or her
discussion with other users. The user may also select an
object type such as a highlighter and highlight part of the
document for special attention or treatment 120. Objects
created are stored in layer link lists 122 as described above
in FIG. 3. Newly created objects are checked against stored
objects in upper layers for overlapping, and overlapping
areas with the stored objects are re-drawn 124, as described
above in FIG. 4.
The user may switch back to the live application mode to

work with the application programs and return the applica
tion sharing program to the background 126 by clicking on
an icon or by using the same hot-key-sequence. At this time,
the transparent window is closed, annotation objects are
redrawn on the application programs, and program control
returns to the application programs. The user may again use
the application programs to make the necessary modification
to the documents in the application programs.

If the user again switches from the application program to
the overlay program, the screen-size, transparent window is
again created and all the annotation objects are placed on
this window for modification.

D. Application Program Writing Over Annotations-Live
Application Mode

Before returning to the application programs, the user
may choose to hide the annotations, or the user may choose

10

15

20

30

35

45

50

55

60

65

10
to allow the annotations to remain on the screen. In the latter
case and after program control has return to the application
programs, any updates to the screen content by the appli
cation programs may overwrite the annotations. Thus, any
screen updates by the application programs must be moni
tored and if the screen updates overwrite the annotations, the
overwritten part of the annotations must be re-drawn.

Referring to FIG. 8, when writing to the screen, as
mentioned above in Sections A and B, the application
program calls windows' write-to-screen routine and pro
vides information regarding the item to be written and the
placement of the item on the screen. The windows system
with its calls redirected, instead of calling the display driver,
now calls the virtual display driver 130. The virtual display
driver now having program control calls the display driver
to write the updates to the screen 134. Then, the virtual
display driver checks if the overlay program is doing the
screen updates by checking a flag in the dynamic link
library. If the flag is set to "off which indicates that the
overlay program is doing the screen updates, the overlay
program must be redrawing the annotations to the screen and
there is no need for the virtual display driver to store
coordinates of the screen updates to the dynamic link library.
If the flag is set to "on' which indicates that the overlay
program is not doing the screen updates, the virtual display
driver stores the coordinates of the screen updates to the
dynamic link library 136. When the application programs
cease updating the screen, the overlay program then redraws
the screen. The overlay program will know when the screen
updates are finished because windows system sends every
application program an "idle' message when the windows
system message queue is empty 138. When the overlay
program receives this message, it checks the dynamic link
library to see if any screen updates were made by the
application programs. If there were screen updates made, the
overlay program checks for overlapping between the screen
updates and the annotations, and redraws the screen if
necessary. Before redrawing the screen, the overlay program
sets the flag in the dynamic link library to off so the virtual
display driver can determine that the overlay program is
redrawing the screen and there is no need to store the
coordinates. When the overlay program finishes redrawing,
the flag is set to on to inform the virtual display driver to
save screen coordinates of the screen updates again.

Another method to check for overlapping and to redraw
annotations is to have the virtual display driver directly do
all of the checking and redrawing. The drawback with this
method is that the virtual display driver has to check every
screen update it receives, rather than a wholesale method as
described above.
The method used to check for overlapping is the same as

described above and depicted in FIG. 4 with the current
layer initially set to 1. If there is any overlapping between
the screen updates and the stored objects, the overlapping
areas with the objects are redrawn. When all the objects have
been checked, program control is returned to windows and
the application program 138.

Note that in this manner, the overlay program can always
display a tool bar containing icons (or any other informa
tion) on the screen for the user to use, even when the
application program has apparent program control. Some of
the functions provided by the tools bar icons include switch
ing to application sharing mode, quitting application shar
ing, or clearing annotation off the screen.

Although the present invention has been described above
in terms of a specific embodiment, it is anticipated that
alterations and modifications thereof will no doubt become

5,577,188
11

apparent to those skilled in the art. It is therefore intended
that the following claims be interpreted as covering all such
alterations and modifications as fall within the true spirit and
scope of the invention.
What is claimed is:
1. In a computer system, a method for displaying user

created objects over images on a computer screen to simu
late annotations and pointers over said images by one or
more users, wherein said images are generated, controlled,
and manipulated by one or more active application programs
and the user-created objects include annotation objects and
pointer objects where the annotation objects and pointer
object for a particular user is of a particular color wherein an
annotation object highlights a part of said images and a
pointer objects directs to an area of said images, comprising
the steps of:

a) creating a transparent window appearing to be dis
played over said images, said transparent window
providing an environment for creation, manipulation,
and deletion of user-created objects;

b) creating and displaying one or more of said user
created objects at user specified locations in said trans
parent window and storing data representing said user
created objects;

c) determining any overlapping portion of said user
created objects and displaying said overlapping portion
of said user-created objects according to a predeter
mined hierarchy;

d) repeating step b and c until a first user command to
close said transparent window is received; and

e) responding to said first user command by closing said
transparent window and returning to said application
programs.

2. A method as recited in claim 1 wherein before step e)
data representing said images and said user-created objects
is transmitted to at least one remote computer having a
computer screen, said images and said user-created objects
being displayed on the computer screen of said remote
computer in the same fashion as in said computer system.

3. A method as recited in claim 2 and further including the
step of:

retrieving the stored data and redrawing the user-created
objects over the images generated by the application
programs after said transparent window is closed.

4. A method as recited in claim 3, wherein a second user
command to remove said user-created objects from the
screen is provided after returning to said application pro
grams, and further including a step of removing all said
user-created objects from the screen upon activation of said
second user command.

5. A method as recited in claim 4, wherein after returning
to said application programs, the following steps are imple
mented:

retrieving the stored data and using it to display said
user-created objects over the images generated by the
application programs;

capturing write-to-screen commands and write-to-screen
data issued by the application programs and displaying
the write-to-screen data on the computer screen;

determining any overlap of the write-to-screen data and
said user-created objects; and

if there is overlap of the write-to-screen data and said
user-created objects, redrawing the overlapping portion
of said user-created objects on the computer screen.

6. A method as recited in claim 5, wherein said user
created objects include pointer objects and annotation
objects.

10

15

20

25

30

35

45

50

55

60

65

12
7. A method as recited in claim 6, wherein said images are

stored in a first layer storage area, said annotation objects are
stored in a second layer storage area, said pointer objects are
stored in a third layer storage area, wherein the pointer
objects are displayed over the annotation objects and the
images, wherein the annotation objects are displayed over
the images, and wherein said overlap determination step
includes the sub-steps of:

i) ascertaining said user-created object type and the asso
ciated layer storage area for said user-created object
type,

ii) setting a current-layer-pointer to point to the associated
layer storage area;

iii) if the current-layer-pointer is not pointing to the third
layer storage area,
advancing the current-layer-pointer to point to the next

layer storage area,
searching for objects stored in the layer storage area

pointed to by the current-layer-pointer;
determining if the stored objects and the user-created

object occupy the same location on the screen; and
drawing any overlapping portion of the stored objects

on the computer screen; and
iv) repeating step ii) until the current layer pointer points

to the third layer storage area.
8. A method as recited in claim 1 and further including the

step of:
retrieving the stored data and redrawing the user-created

objects over the images generated by the application
programs after said transparent window is closed.

9. A method as recited in claim 1, wherein a second user
command to remove said user-created objects from the
screen is provided after returning to said application pro
grams, and further including a step of removing all said
user-created objects from the screen upon activation of said
Second user command.

10. A method as recited in claim 1, wherein after returning
to said application programs, the following steps are imple
mented:

retrieving the stored data and using it to display said
user-created objects over the images generated by the
application programs;

capturing write-to-screen commands and write-to-screen
data issued by the application programs and displaying
the write-to-screen data on the computer screen;

determining any overlap of the write-to-screen data and
said user-created objects; and

if there is overlap of the write-to-screen data and said
user-created objects, redrawing the overlapping portion
of said user-created objects on the computer screen.

11. A method as recited in claim 1, wherein said user
created objects include pointer object type and annotation
object type.

12. A method as recited in claim 11, wherein said images
are stored in a first layer storage area, said annotation objects
are stored in a second layer storage area, said pointer objects
are stored in a third layer storage area, wherein the pointer
objects are displayed over the annotation objects and the
images, wherein the annotation objects are displayed over
the images, and wherein said overlap determination step
includes the sub-steps of:

i) ascertaining said user-created object type and the asso
ciated layer storage area for said user-created object
type,

ii) setting a current-layer-pointer to point to the associated
layer storage area;

5,577,188
13

iii) if the current-layer-pointer is not pointing to the third
layer storage area,
advancing the current-layer-pointer to point to the next

layer storage area,
searching for objects stored in the layer storage area

pointed to by the current-layer-pointer;
determining if the stored objects and the user-created

object occupy the same location on the screen; and
drawing any overlapping portion of the stored objects

on the computer Screen, and
iv) repeating step ii) until the current layer pointer points

to the third layer storage area.
13. In a teleconferencing system providing an environ

ment on a host computer wherein at least one remote
computer at a different site can be electronically and com
municative linked to pass data between said remote com
puter and said host computer, and including means for
establishing at least one communication link between said
host computer and said remote computer, user-interface
means responsive to user commands for loading previously
created frames of data for transmission to the remote com
puter and for allowing user creation of new frames of data,
means for transmitting said frames of data from the host
computer to said remote computer via said communication
link, an improved control means for controlling said user
interface means, said improved control means implementing
a method comprising the steps of:

a) creating a transparent window appearing to be dis
played over said images, said transparent window
providing an environment for creation, manipulation,
and deletion of one or more user-created objects;

b) creating and displaying one or more of said user
created objects at user specified locations in said trans
parent window and storing data representing said user
created objects;

c) determining any overlapping portion of said user
created objects and displaying said overlapping portion
of said user-created objects according to a predeter
mined hierarchy;

d) repeating step b and c until a first user command to
close said transparent window is received; and

e) responding to said first user command by closing said
transparent window and returning to said application
programs.

14. In a system as recited in claim 13 wherein before step
e) data representing said images and said user-created
objects is transmitted to at least one remote computer having
a computer screen, said images and said user-created objects
being displayed on the computer screen of said remote
computer in the same fashion as in said computer system.

15. In a system as recited in claim 14 and further including
the step of:

retrieving the stored data and redrawing the user-created
objects over the images generated by the application
programs after said transparent window is closed.

16. In a system as recited in claim 15, wherein a second
user command to remove said user-created objects from the
screen is provided after returning to said application pro
grams, and further including a step of removing all said
user-created objects from the screen upon activation of said
second user command.

17. In a system as recited in claim 16, wherein after
returning to said application programs, the following steps
are implemented:

retrieving the stored data and using it to display said
user-created objects over the images generated by the
application programs;

5

10

15

20

30

35

45

50

55

60

65

14
capturing write-to-screen commands and write-to-screen

data issued by the application programs and displaying
the write-to-screen data on the computer screen;

determining any overlap of the write-to-screen data and
said user-created objects; and

if there is overlap of the write-to-screen data and said
user-created objects, redrawing the overlapping portion
of said user-created objects on the computer screen.

18. In a system as recited in claim 17, wherein said
user-created objects include pointer objects and annotation
objects.

19. In a system as recited in claim 18, wherein said images
are stored in a first layer storage area, said annotation objects
are stored in a second layer storage area, said pointer objects
are stored in a third layer storage area, wherein the pointer
objects are displayed over the annotation objects and the
images, wherein the annotation objects are displayed over
the images, and wherein said overlap determination step
includes the sub-steps of:

i) ascertaining said user-created object type and the asso
ciated layer storage area for said user-created object
type; -

ii) setting a current-layer-pointer to point to the associated
layer storage area;

iii) if the current-layer-pointer is not pointing to the third
layer storage area,
advancing the current-layer-pointer to point to the next

layer storage area;
searching for objects stored in the layer storage area

pointed to by the current-layer-pointer;
determining if the stored objects and the user-created

object occupy the same location on the screen; and
drawing any overlapping portion of the stored objects
on the computer screen; and

iv) repeating step ii) until the current layer pointer points
to the third layer storage area.

20. In a system as recited in claim 13 and further including
the step of:

retrieving the stored data and redrawing the user-created
objects over the images generated by the application
programs after said transparent window is closed.

21. In a system as recited in claim 13, wherein a second
user command to remove said user-created objects from the
screen is provided after returning to said application pro
grams, and further including a step of removing all said
user-created objects from the screen upon activation of said
second user command.

22. In a system as recited in claim 13, wherein after
returning to said application programs, the following steps
are implemented:

retrieving the stored data and using it to display said
user-created objects over the images generated by the
application programs;

capturing write-to-screen commands and write-to-screen
data issued by the application programs and displaying
the write-to-screen data on the computer screen;

determining any overlap of the write-to-screen data and
said user-created objects, and

if there is overlap of the write-to-screen data and said
user-created objects, redrawing the overlapping portion
of said user-created objects on the computer screen.

23. A system as recited in claim 13, wherein said user
created objects include pointer object type and annotation
object type.

24. In a system as recited in claim 23, wherein said images
are stored in a first layer storage area, said annotation objects

5,577,188
15

are stored in a second layer storage area, said pointer objects
are stored in a third layer storage area, wherein the pointer
objects are displayed over the annotation objects and the
images, wherein the annotation objects are displayed over
the images, and wherein said overlap determination step
includes the sub-steps of:

i) ascertaining said user-created object type and the asso
ciated layer storage area for said user-created object
type,

ii) setting a current-layer-pointer to point to the associated
layer storage area;

iii) if the current-layer-pointer is not pointing to the third
layer storage area,

10

16
advancing the current-layer-pointer to point to the next

layer storage area;
searching for objects stored in the layer storage area

pointed to by the current-layer-pointer;
determining if the stored objects and the user-created

object occupy the same location on the screen; and
drawing any overlapping portion of the stored objects
on the computer screen; and

iv) repeating step ii) until the current layer pointer points
to the third layer storage area.

ck cK cit k >k

