
USO05600834A

United States Patent (19) 11) Patent Number: 5,600,834
Howard 45) Date of Patent: Feb. 4, 1997

(54) METHOD AND APPARATUS FOR 5,247,684 9/1993 Tavares et al. 395/700

(75)

73

21

22

63
51
52)

58)

(56)

RECONCLING OFFERENT VERSIONS OF
AFILE

Inventor: John H. Howard, Cambridge, Mass.

Assignee: Mitsubishi Electric Information
Technology Center America, Inc.,
Cambridge, Mass.

Appl. No.: 417,446
Filed: Apr. 5, 1995

Related U.S. Application Data

Continuation of Ser. No. 61,674, May 14, 1993, abandoned.
Int. Cl. G06F 15/00; G06F 7700
U.S. Cl. 395/617; 395/200.08; 395/200.19;

364/DIG. 1; 364/282.1; 364/281.5; 364/282.4
Field of Search 395/600, 200.08,

395/200.19; 364/DIG. 1

References Cited

U.S. PATENT DOCUMENTS

4,077,059 2/1978 Cordi et al. 364/200
4,408,273 10/1983 Plow 364/200
4,819,156 4/1989 Delorme et al. 364/200
4,823,310 4/1989 Grand 364/900
4,875,159 10/1989 Cary et al. 364,200
4,914,654 4/1990 Matsuda et al. . 370,941
5,151,988 9/1992 Yamagishi........ ... 395/600
5,155,849 10/1992 Westfall et al. 395/600
5,212,788 5/1993 Lomet et al. 395/600

5,261,094 11/1993 Everson et al. .
5,263,155 11/1993 Wang
5,357,631 10/1994. Howell
5,388,255 2/1995 Pytlik et al.

... 395/600
... 395/600
... 395/600

a a - a 395/600

Primary Examiner Wayne Amsbury
Assistant Examiner-Jean R. Homere
Attorney, Agent, or Firm-Robert K. Tendler, Esq.
57 ABSTRACT

In a distributed file environment, a system for safely updat
ing a file without risk of losing work performed at one site
due to work performed on the file at another site uses a
journal or log at each site which is updated after a file is
modified. This log is compared with the logs from other sites
before a file is used at any one site, so that new versions can
be propogated automatically and safely to out-of-date sites,
with the user immediately alerted if conflicting versions of
the file exist at different sites. The reconciliation can be
applied to collections of files, automatically updating only
those files for which it is safe to and necessary do so. Since
reconciliation occurs at times selected by the user, incon
sistent or partially completed versions of files need not be
propogated to other sites. Additionally, logs may be built
incrementally by occasionally observing the state of the
systems in terms of the files and their time stamps and
creating additional log entries reflecting appearance, disap
pearance and changes of files. Furthermore, logs may be
purged of obsolete entries by including additional log entries
indicating the most recent time each site has participated in
a reconciliation and deleting obsolete entries that all sites
have seen.

4 Claims, 5 Drawing Sheets

5,600,834 Sheet 1 of 5 Feb. 4, 1997 U.S. Patent

A/9

W

X 2

WFAS/0/Wifi /

U.S. Patent Feb. 4, 1997 Sheet 2 of 5 5,600,834

A0A07
70 ADF/W

NFLOPPY 26

g y
26

(OPY

U.S. Patent Feb. 4, 1997 Sheet 3 of 5 5,600,834

WORA

40

S
gas -2

106/

56

(REATF
4 106x

A/OD/AY

6

46

106, fl062 60

(OMPARE
1063, l06

106

U.S. Patent Feb. 4, 1997

JOURNAL OF S/IF Y

(REAIFA 10:30
(PFA/F B 10.3/
(AEAIF (/032

(PFAIA () /033
(IPOAIF () 10:35

(RFAIF f 1055
(EIFIE F / 0.56

(0MB//EO JOURNAL
(APEA/F A
(APAA/F A
(AFEA/F (
t/PDA7F (
(FEA/F ()
UPDAIF f)

()
Af
Af

10:30
10:3/
10:32
10: 45
10: 33
/0, 35

l/ADAIA /07
(APEAJA 10:55
(AIAIF /056 -

Action for 4-1
GAI (AAOM Y
(0/WF1/07 AS ()
(AFAJAAAA/UALLY

FIG. 4

Sheet 4 of 5

JOURNAL OF S/IF Y
CREAJE A 10:30

CREAIF (/032
l/ADA7F (10.45
CREAIF () 10:33

l/PDAJE f) 10:37
(AAAIA A 1055

69

B /S A//SS/AG ANY

A/SS/AG AT Y

AOR ()

(WFEA) 10 DFIFIA
A. AJ Y

yactio AOR Y
GE/ A FAO/
(0WFL/CIOWER ()
DELE/F F

5,600,834

C//0, 45 l/PDA/F) /S

(OWF//07/6 l/PDA/AS

U.S. Patent Feb. 4, 1997 Sheet 5 of 5 5,600,834

S/TE
OAEAA T/OAV A/L E. T/MES TOA A/OMA Off/CE

JOUR/WAL CAEATE A 4//9/93 /O.22
UPDATE A 4/2O/93 3: 3O

UPDATE WEEDED COAY FAPOM HOME TO WORK

CAPEATE 4/19/93 /O22 v/ V1
UADA7A 4/2O/93 s.3O W ->O

PELATE WAEOELO DELE 7A COAY AT WOAPA

CAAATA At 4//9/93 /O.35 V1 v1.
DELETE A 4/2O/93 S/5 O<- W^

COWAL/CT DETECTED

CAAATE C 4//9/93 /O.35
UADATE C 4//9/93 // OO
UAOA7A C 4/2O/93 s.3O

FIG. 5

5,600,834
1.

METHOD AND APPARATUS FOR
RECONCLING OFFERENT VERSIONS OF

AFILE

This is a continuation of application Ser. No. 08/061,674
filed on May 14, 1993, now abandoned.

FIELD OF INVENTION

This invention relates to distributed file systems and more
particularly to a method and system for reconciling different
versions of files, in which the files are stored in computers
at two or more separate locations or sites.

BACKGROUND OF THE INVENTION

There is a problem, especially with the portability of
computers and floppy disks that a given file, for instance, in
a lap top may not reflect the same information or data as the
same file at a desktop or fixed work station.

This is because work is frequently taken from location to
location. As frequently happens, a file created at a fixed work
station at the office may be modified at a remote location,
such as one's home, by merely transporting a disk or diskette
containing the file and modifying it at the remote location.
Multiple versions of the same file can also exist in distrib
uted networks when files are modified or manipulated by
multiple users.

Problems thus arise when the versions of the file at two
sites, such as home and office, do not agree because they
have not been identically updated. This can occur by acci
dent when one forgets to transport a floppy disk from one
location to the other; or when one forgets to load the disk
altogether.

It is of course desirable to have some synchronization
between versions of the same file when created or modified
at two different sites. For instance, it is possible to have the
same version of a file at two sites and only access one at a
time. When, however, versions of a file are created at two
sites, it is important to be able to update or reconcile the files
at both sites so as to appropriately update both files, or only
one file.

In the past, systems have compared the times that a file
was updated at different sites, have automatically selected
the most recent version, and have copied this version into the
appropriate file at both sites. Such systems include the
Novell, Netware, Sun Microsystems Network File System
(NSF) and Andrew File Systems. All of these systems have
problems with their automatic updating procedures.

It is also a feature of NFS, Andrew File System, and,
Netware that they automatically alter files immediately after
they are modified. This results in significant performance
problems as new versions of files are transmitted. Moreover
all updates are distributed throughout the network, exposing
raw work product to all on the system. It can also be an
embarrassment because of the automation process, where
those connected to the distributed system immediately have
knowledge of new unedited data and changes.

It will of course be appreciated that when there are
multiple users or contributors to a single file, such as in
writing software, or as in editing documents, it is very
important to alert all users of the same file as to what others
are doing so that at some point there is control in each of the
users as to what updating or reconciling of multiple versions
of the file will be permitted. It is particularly annoying for
the writer of software to have someone else edit his software

10

15

20

25

30

35

40

45

50

55

65

2
without his knowledge. Likewise, it is equally unfortunate
for the word processing public to have one user edit a work
without giving adequate notice to the other user.
More specifically, an inadequate solution to the problem

of multiple versions of the file at different locations exists in
distributed file system technology as represented by the
NFS, Andrew, Apple Share, Novell, and Research Systems
software such as Coda and Ficus. All of these systems give
the impression of being a single global file system. The
advantages of having a single global file system are auto
matic updating, sharing, and familiar time sharing systems
semantics. However, the problems with such systems are
that they fail or degrade when disconnected, are unpredict
able in performance, are unacceptable in that updates are at
the system's convenience and not at the user's, and that they
require a modified operating system, often requiring a single
vendor.

Another inadequate solution to the problem of multiple
revisions of a file is found in the explicit file transfer
technology associated with diskette/tape, E-mail, Lap-Link
and file transfer protocols. What these systems attempt to do
is copy files and carry or mail them. While the advantages
are complete user control, flexible transport, and conversion
between different systems, the disadvantages include com
plicated and error-prone protocols, in which overwriting of
useful data can occur accidentally and in which there are no
"merges' of different versions.

In all these systems, the most recent version of the file in
one computer is automatically copied to the other. Thus,
current programs seek to establish which file is correct by
date and time, a technique called "time stamping'. However,
these types of systems are far from failsafe. For instance,
assuming one wishes to delete a file on a laptop, deleting the
file at the lap top may not result in deleting the file at the
fixed work station, but rather in restoration of the obsolete
file found at the work station. Thus automatic reconciling
systems are error-prone.
More generally, if some work is to be accomplished on a

file in more than one place, then it is possible that neither
supercedes the other. Time stamp based reconciliation thus
will possibly result in over-writing relevant information. As
a result, user's work embodied in the older version may be
lost without any warning. It is also possible that this will
only happen when one forgets to hook up the computers for
the reconciliation between versions of the file.
What is important is to know when a file has been edited

in two places, what has been done, whether or not to
authorize a merge of the two versions, and on what basis. It
is therefore important to devise a system by which a merge
is done in a safe way. It is also important to provide a system
in which conflicts are recognized, with the conflict not
necessarily being resolved automatically, but rather at the
option of an individual operator who has been alerted to the
fact of a conflict.

Note that one prior art way of determining a conflict is the
so-called "journaling' technique which is to keep a record of
what has transpired at one central location. Using a single
centralized computer, a forward log or journal type of
reconciliation may be accomplished.

SUMMARY OF THE INVENTION

However, rather than keeping a centralized journal, it is a
feature of the present invention that each computer or
system keep its own journal. The journal, which is a history
of file versions, indicates the file which is edited and its

5,600,834
3

date/time stamp. Optionally the journal may also keep a
detail of the type of editing that was involved should a
conflict be determined.

For reconciliation, if the files are the same and the
journals agree, there is no conflict.
On the other hand, when one works on one computer but

not the other, and the resulting files are subsequently to be
merged together, the Subject System first compares the two
journals to see if one has more journal entries in one than the
other. Note the comparison may be facilitated by in a merge
operation. Once having determined that there are differences
in some of the journal entries, then the system automatically
copies those files for which the journal indicates no conflict,
and alerts the user so that actions can be taken to resolve any
conflict found.

Different versions of the same file are thus reconciled by
each computer maintaining its own journal and by the
comparison of the two journals at times specified by the user,
with the reconciling system automatically updating file
revisions when appropriate, or providing the user with an
indication that such automatic updating is inappropriate.

Specifically, the Subject System can be configured to
either delete a file which has been determined to be the
non-desired file, or to copy the most recent file, in a
replacing operation, into the computer which does not have
the most recent file. At some point the journals of both of the
computers will be in synchronization. Thereafter if no
journals change, there need be no indication made to the user
that a conflict exists. If one of the journals changes at only
one site, then it is possible to simply instruct the machine at
the other site on command to do the same actions. However,
if both journals are changed, it is very important to alert the
user that a conflict cannot be resolved.

Note, in the Subject Invention, not only does reconciling
include the concept of copying or deleting, one can increase
the level of detail of the individual entries in the logs that are
filed to alert the user that a simple merge/purge performed
on a time stamp basis will not work. For example, if the user
is warned, the user may run a program called DIFF which
highlights the differences between the two files. At that
point, the user may decide which of the two files he prefers
or which changes should be made in what file.

Thus, in the Subject Invention, in a distributed file system,
instead of giving the user the impression that there is only
one set of files, the system provides user with the impression
that there are different versions of a file which must be
occasionally reconciled, although only at the convenience of
the user. The Subject System solves the problem of multiple
versions of the same file by reconciling on demand. Each
computer has a local version of the same data, reconciled by
comparing journals of local changes, with user intervention
being called into play if conflicting changes are discovered.

Applications for the subject reconciling system include
file cataloging and reconciliation, office applications and
database management systems. Hardware can involve orga
nizers, palm tops, pen based tablets and notebooks.

Further applications of the Subject System include merg
ing records within files. Moreover, it is possible to batch
update by exchanging journals.

It is an important feature of the subject invention that the
reconciliation may be invoked under user or application
control, either at the beginning or end of a working session
or overnight, for instance.

In summary, in a distributed file environment, a system for
safely updating a file without risk of losing work performed

10

15

20

25

30

35

40

45

50

55

60

65

4
at one site due to work performed on the file at another site
includes maintaining a journal or log at each site which is
updated after a file is modified. This journal is compared
with the logs from other sites before a file is used at any one
site, so that new versions can be propogated automatically
and safely to out-of-date sites, with the user immediately
alerted if conflicting versions of the file exist at different
sites. Different versions of the same file are thus reconciled
by each computer maintaining its own journal and by the
comparison of the two journals at times specified by the user,
with the reconciling system automatically updating file
revisions when appropriate, or providing the user with an
indication that such automatic updating is inappropriate. The
reconciliation can be applied to collections of files, auto
matically updating only those files for which it is safe to and
necessary do so. Since reconciliation occurs at times
selected by the user, inconsistent or partially completed
versions of files need not be propogated to other sites.
Additionally, logs may be built incrementally by occasion
ally observing the state of the systems in terms of the files
and their time stamps and creating additional log entries
reflecting appearance, disappearance and changes of files.
Furthermore, logs may be purged of obsolete entries by
including additional log entries indicating the most recent
time each site has participated in a reconciliation and
deleting obsolete entries that all sites have seen.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of the Subject Invention will be
better understood taken in conjunction with the detailed
description in conjunction with the drawings of which:

FIG. 1 is a diagrammatic representation of the transfer of
versions of a file from an office computer to a remote
location, for instance, in the home;

FIG. 2 is a diagrammatic representation of the problem of
generating two different versions of the same file through the
modification of the file at two different locations;

FIG. 3 is a diagrammatic representation of a method for
reconciling versions of a file including the creation of logs
at various sites and the comparison of the logs prior to
permitting either automatic updating or manual updating
when a comparison between the logs indicates a discrep
ancy;

FIG. 4 is a block diagram illustrating the generation of
journals at two sites, forming a combined journal, detecting
a conflict, and providing actions based on conflict resolu
tion; and

FIG. 5 is a series of diagrams indicating journals and
situations where no update is needed, an update is needed,
a delete is needed, or a conflict is to be indicated.

DETALED DESCRIPTION

Referring now to FIG. 1, in a typical operational setting,
Version #1 of a file may be created at a fixed terminal 10 at
an office 12 in which the version created at terminal 10 is
stored in a storage device 14. The information in this file
may be transferred as via a floppy diskette 16 to a computer
18 at a home site 19, with the file being modifiable so as to
produce a Version #2 which is stored in a storage device 20.

Referring now to FIG. 2, it will be seen how it is possible
to modify files at two different sites or locations such that
work performed in the file may not necessarily be on the
most recently updated file. As can be seen, Work 1 in storage
device 22 contains the Version #1 which is copied onto a

5,600,834
S

diskette 24 that is then copied into storage device 26 at a
remote site or location. The information in storage device 26
may be modified so as to produce a Version #2 at 26 which
is then copied, for instance, onto a diskette 28 that is copied
into storage device 22 at the first site as Version #2. This
version may be further modified and placed in storage as
Version #3. Thereafter this version may be copied onto
diskette 30 which is intended to be downloaded to storage
device 26. However in the process either the disk is lost or
not downloaded, at which point the modification as illus
trated at V is copied onto a diskette 32. It will be appreci
ated that there is now a problem in that Version #3 is
different than Version V, which was created by modifying
Versions V, as opposed to Version V. This creates an error
which is difficult to rectify and may be unnoticed.
The problem, of course, is that these are two versions of

the same file. The first version will be Version Three and the
second version will be Version X. Merely updating one of
the computers with one version or the other will not solve
the problem of reconciliation, because Version X does not
have the updates of Version Three. Thus it is impossible to
automatically update either of the versions at either of the
different locations; and it is for this reason that time stamp
based systems for reconciliation fail.

Thus, in terms of a typical scenario, considering the case
of writing a book using personal computers at office and
home, carrying files back and forth on a diskette, the normal
procedure is to copy all the working files from the diskette
to the computer about to be used, edit one or more chapters,
and copy the edited files back to the diskette when done.
As a result one has three different copies of the files, one

stored in the office computer, one at home, and one on the
diskette. Even though there are really three copies, one
thinks of them as being different versions of the same files.

If one forgets to copy the files edited at the office, one can
then go home with an out-of-date diskette. The diskette
carried home is then copied to the home computer and
editing continues, not noticing that one is starting with stale
information. The next day the updated files are copied back
to the office computer, losing the previous work.

There are some things one can do to help protect against
this common error. For example, some file copying pro
grams have an option to check dates and refuse to replace a
newer version of a file with an older one. This helps
considerably, but is not perfect. It does not detect the error
described above, for example, since the versions of the files
edited at home in the evening do have a later date than the
versions edited yesterday at work. It also fails to handle the
case of deleting obsolete files.

Referring now to FIG. 3, the subject file reconciling
system solves the above problems by embedding a program
called RECONCILE in a system which detects conflicting
updates, so one can use it to update files safely. The system
will replace a file with a later version only if it is sure that
the later version was derived from the one being replaced. If
the file to be replaced is not an earlier version, the system
will report an error so that one can resolve the conflict.
More specifically, assuming that a Version #1 of a file is

stored at a storage device 40, the Subject System creates a
log, Log here illustrated at 42. When Version V is copied
onto a diskette 44, Log also appears on the diskette. This
diskette may then be loaded into a storage device 46 at a
remote location, where the Version #1 storage may be
modified to produce Version #2, which is again stored at
storage device 46. Concommitant with the modification of
Version #1 to Version #2, a further log is created, Log as

10

15

20

25

30

35

40

45

50

55

60

65

6
illustrated at 48. When this file is to be transferred to the
work location, it is downloaded to a diskette 50 which
contains not only Version V2, it also contains Log+Log, as
illustrated. This is downloaded back to storage device 40 at
the original work location which may be modified as illus
trated by Version V again stored at storage device 40. Upon
modification of the V version, the system creates an addi
tional log, Log as illustrated at 52.

Again, when this version of the file is to be transferred to
the remote location, it is downloaded to a diskette 54 which
then contains not only Version V, but also Log+Log
+Log. This diskette, however, in the example given is not
downloaded to storage device 46. Rather, as inadvertently
sometimes happens, V is modified to produce Version V.
At the same time that V is formed, a log, Log, is created
as illustrated at 56. Version V may ultimately be transferred
to a diskette 58. This diskette will have Version V down
loaded to it plus Log+Log+Log. If diskette 58 is then to
be loaded back into the storage device 40, upon accessing of
this file a unit 60 compares the logs previously generated at
the work site, with the logs associated with diskette 58
which has been loaded at the worksite. The result of the
comparison step is either to alert the operator at 62 to a
difference in the logs for this file which will not permit
automatic updating, or permit automatic updating as indi
cated by merge 64.

This being the case, a system is provided through the
comparison of logs to either permit automatic updating or to
alert the user that automatic updating is inappropriate.

In the scenario of FIG.3, neither the office nor the evening
versions of the files were derived from the other, so REC
ONCILE will prevent the system from overwriting them.
Note the versions were both derived from the same earlier
version, but not from each other.
The system knows when one version of a file was derived

from another by keeping a history of past versions of files.
If one history indicates that a file has gone through Versions
#1, 2 and 3 while the other has only Version #1 and 2, it is
safe to copy Version #3. But if one history shows Versions
#1, 2 and 3 while the other shows Versions #1, 2 and 4, there
is a conflict since neither Version #3 nor Version #4 was
derived from the other.

More specifically, FIG. 4 shows how two journals are
reconciled. Starting with the two separate journals, for Sites
X and Y, here illustrated at 66 and 68 respectively, each
journal or log contains entries describing the history of five
files, named A, B, C, D and E. In addition to the file name,
the journal entries indicate the action which was taken,
either Create, Update or Delete, and the time which that
action was taken, at that particular site. For example, the
journal of Site X shows that file E was created at 10:55 and
deleted at 10:56. Note, only times are shown for conve
nience, since the log typically indicates both time and date.

Note that the journals are ordered by file name: A, B, C,
D and E; and by timestamp for the same file name. Journals
are combined by merging them according to this rule:
Identical entries (including the action taken) are combined
into a single entry during the merge. The combined journal
as illustrated at 70 also records which sites had each entry.
This could be X, Y, or both X and Y. For example, the
combined journal shows that E was created at 10:55 known
to both X and Y, and deleted at 10:56, known only to Site X.
The goal of reconciliation is to bring the individual

journals up to date by performing missing actions. Thus, in
FIG. 4, the missing creation of file B at Site Y can be fixed
by copying file B from Site X to Site Y. The missing update

5,600,834
7

of C at X can similarly be fixed by copying C from Site Y.
In the case of file E, the missing action is a deletion, which
can be corrected by deleting the copy of file E at Site Y. As
these reconciliation actions are taken, the missing journal
entries are filled in and the individual journals updated.

There is a conflict in the case of file D. Both sites agree
that the file was originally created at 10:33, but they show
independent updates occurring at different times, and neither
site knows about the other site's update. The automatic
reconciliation procedure reports this conflict rather than
replacing either version, leaving it up to the user to perform
whatever correction or merge of the individual files is
necessary.
By way of further description, the following definitions

are useful in understanding the Subject Invention.
For purposes of this invention, a file is a body of closely

related information stored in a computer. Typical examples
of files would be documents edited with a word processor,
or spreadsheets, or messages. Each individual memoran
dum, letter, or book chapter is kept in its own file. In addition
to its contents, a file has a name and a timestamp. The name
identifies the file in general and the timestamp indicates
when the file was created or changed. As time passes, a file
with the same name will have different versions, which can
be distinguished by their different timestamps.
A directory is defined as a collection of files. Usually the

files in a directory have some loose relationship, for example
that they are all part of some larger body of information like
the chapters in a book; or that they were created by the same
person, relate to the same topic, or are owned by the same
organization. Directories also have names, and may also
have timestamps, although directory timestamps are not
very useful.
Most computer systems allow files and directories to be

arranged in a hierarchy or tree, which means that directories
can contain subdirectories. An advantage of subdirectories is
that more closely related files can be grouped together. To
find a file one works one's way into the successive subdi
rectories until the desired file is reached.
A working session is defined as a period of work on a

single computer. During the course of a working session,
files may be in an incomplete or inconsistent state. One
ordinarily doesn't want to make a permanent record of these
files or to send copies elsewhere. Usually one tries to finish
a day's work by cleaning up the inconsistencies before
ending the working session, although occasionally a session
may last several days. Note, a session can be anything one
chooses. It is, however, important to note that one doesn't
use RECONCILE to copy files during a working session, but
only at the beginning and/or end.
A site is a specific storage location for a directory hier

archy. As understood herein, several sites are considered as
all containing versions of the same directory hierarchy.
These versions may be the same or different. The basic
purpose of the Subject System is to combine hierarchies at
different sites, making them all the same by safely updating
versions of individual files.
One should not think of a site as being the total disk

storage on any one computer. Usually a site would contain
a number of unrelated hierarchies defined according the
user's convenience. A personal computer, for example,
might contain separate hierarchies for system software,
installed applications, and one or more individuals' working
files. While actual systems often glue these into a single
super-hierarchy, it is easier to think of them as being
separate.
A site may also be nothing more than a diskette. In fact,

the way one copies files to and from the diskette in the above
scenario is to reconcile the diskette version with the com

O

15

20

25

30

35

40

45

50

55

60

65

8
puter at home or office that one is copying to or from. At the
beginning of a working session, the Subject System will
detect newer files on the diskette and copy them to the
computer. At the end of the session, the Subject System will
detect newer files on the computer and copy them to the
diskette.
By way of definition, a journal is a history of file versions.

To do its work, the Subject System creates a journal for each
site, merges them to look for missing versions, and either
updates by copying more recent non-conflicting versions, or
else reports errors if there are conflicts.
As with database journals, the journals used by the

Subject System contain not only names and timestamps but
also actions. For this system these are very simple: either
"update' or "delete', which can be inferred from the fact
that a previously-present file has disappeared.

Including deletion operations in journals means that rec
oncile can safely propagate deletions to other sites, again
checking for conflicts.
There are actually two kinds of journals: internal and

external. An internal journal is stored as a special file within
the directory it describes. In each hierarchy, each directory
has its own internal journal. An external journal contains the
same information, but has been extracted into a separate file,
and stored somewhere eise. Although this system can use
both kinds, it can only update to or from internal journals.
External journals may be used as sources of information
about necessary updates, but the actual files and directories
involved are not directly accessible.
One implementation of the Subject System is described in

the version of RECONCILE attached hereto as Appendix A.
The simplest and standard way to use RECONCILE is to

apply it to several directly accessible sites such as mounted
disks or diskettes. For example the command

reconcile. a\
would reconcile the current working directory (named "..' in
most systems) with the diskette in drive A. The order of the
two parameters doesn't matter. In this scenario, RECON
CILE would be run when one begins using either the office
or the home computer, and again at the end. So long as one
never forgets to do this, all updating is automatic. One can
even delete obsolete files without having them "come back'
at the other computer.
Suppose one does happen to forget to reconcile at the

beginning or end of a session, and one then updates some
file. The next time one reconciles with the two conflicting
versions of the file, one will obtain the error message:

reconcile: Conflicting Versions, foops and a:oops
At this point the two users should consult their memories of
what the conflicting updates were, or use a tool such as diff
to find and display the differences between the two versions.
One now edits one or the other to merge changes, if
necessary. Finally, the resulting good version of the file is
copied to the other site, replacing the bad version there,
usually a copy program which copies the timestamp as well
as the contents. This will leave a record of the conflict in the
journals, but since there is a more recent, non-conflicting
version at both sites, RECONCILE will not indicate any
conflict.

In one embodiment, the Subject System builds journals by
comparing the actual directories with the previous versions
of its own journals each time it is run. This means that it
makes sense to run RECONCILE even for a single site:

reconcile.
This updates the internal journal of the current working
directory. If one makes several successive versions of a file,
RECONCILE will only see the last one since the last time
it was run. This can actually be an advantage since the other

5,600,834

versions are of no particular significance as long as they are
not transmitted to any other site.
One can choose how often one wants to run RECON

CILE. Even if one forgets to run RECONCILE at the end of
a working session, one will not lose anything permanently.
The cost of forgetting a reconciliation will be an increased
probability of conflicting updates, needing manual interven
tion at a later time.

Other applications for the Subject System are as follows:
Supposing the joint writing of a research paper with a

colleague, one stores the various sections of the paper in a
directory to which each has access. Ordinarily both users
communicate directly to avoid conflicting updates, but
sometimes one of the users forgets. This is handled with
RECONCILE. Each user makes a private copy of the entire
directory. Assuming the directories are named -tom/paper,
-dick/paper, and -public/paper, and that Tom is the user in
question, before beginning a working session, Tom performs
the command

reconcile -tom/paper-common/paper
At this point there may be conflicts. If there are, Tom may
need to give Dick a call to resolve them. Having done Tom
is sure that his working version of the paper is in agreement
with the shared version. During the course of the work
various sections might be temporarily wrong, or inconsistent
with each other, but since this is just a working copy and not
the public version, Tom is not concerned. Eventually Tom
will be happy with the final version having proofread it, and
checks it back in with exactly the same command as above.

COMMAND SYNTAX

The syntax of the "RECONCILE” command is
reconcile options)-model (directory file)) . . .
If no directories or files are provided, the current working

directory (".") is used.

directory names a directory containing an internal journal
and files

file names an external journal describing some
remote site

('-' refers to an external journal on standard input or
output) mode is one or more of the following letters:

r read the journal but don't write it
W write the journal but don't read it
O do not update files, only the journal

Option parameters are:

-q work quietly, suppressing messages about actions
taken
do not update any files (except journals)
regardless of -u flags
print a helpful description of the command syntax
Abandon named site. Use this to forget
about a site which is no longer in use.
This allows the program to discard obsolete
journal entries needed only for
reconciliations with old sites. Sites are
automatically abandoned after two months,
with warnings being printed after one month.

-a sitenane

As to environment, in addition to command line param
eters, RECONCILE gets a name for the computer system
being used from the environment variable SHOST, using
'UNKNOWN' if it is undefined.

5

10

15

20

25

30

35

45

50

55

65

10
As to the overall sequence of events, RECONCILE per

forms its processing in the following general steps:
1. Parse parameters, building a list of sites to be recon

ciled. If no sites are given, use "..' (the current working
directory) as the only site.

2. Read the old journal file for each site.
3. For each internal site, update the journal by examining

the files currently present at that site.
4. Update the list of known sites and their most recent

reconciliation times. Events known from these times to be
obsolete at all known sites will be discarded.

5. Perform the actual reconciliation, detecting conflicts
and replicating files when there is no conflict. Update the
internal journals accordingly.

6. For each site, write out an updated journal file.
These steps are described in more detail below.
As to the parameter parsing step, Step I, this is a straight

forward process of examining the parameters sequentially. It
is performed by procedure "main” in module "reconcile.”

For reading and writing journals as in Steps 2 and 6,
journals read by procedures “readjournal' and "readentries'
in module journal', and write by procedures "writejournal”
and "writeentries'. The journal file format is editable text,
described in the Journal File Formal section below.
As far as updates from the actual directory as in Step 3,

journals are brought up to date with reality by reading the
actual directory and inserting journal entries accordingly.
This work is done by procedure "readidirectory” in module
"journal.” Current directory entries are considered one at a
time. For each one found, a new journal entry for the site,
time, and filename is created if none exists, and the new or
existing entry is marked as having been confirmed.

After the entire directory has been read, a pass is made
through the journal looking for unconfirmed entries. An
unconfirmed entry indicates that a file once existed but no
longer does; that is, that it has been deleted. For each such
unconfirmed entry, a new journal entry is created with a
deletion action and the current time as its timestamp.

For reconciliation as in Step 5, the actual reconciliation is
performed on the internal representation of the journals by
procedure "reconcile' in module "journal.”

Reconciliation is performed only for the current entry;
that is, the most recent entry for the file. Previous entries
refer to out-of-date versions of the file. The goal is to make
the entry and file present at every site. For each site at which
the entry is not present, the program first checks to see if
there is a conflict, see below. If there is none, the file is then
copied from any site at which the current entry exists.
Copying the file may actually be deleting it if the current
event is a deletion event, or may involve creating or deleting
a directory or symbolic link. Copying and deleting is done
by procedures in the site module, since the action to be
performed may depend on the type of site.

Detecting inconsistencies is accomplished as follows. A
conflict exists for a site if the site does not have the current
version of a file, but does have some previous version, and
the current version is not derived from the previous one, as
defined below. Existence of derivation shows that the current
version came from the previous one by a connected series of
user actions. This implies that it is safe to replace the prior
version with the current one, since doing so is equivalent to
replaying the sequence of actions in the derivation. Lack of
a derivation implies that the replacement may be unsafe and
therefore should not be done automatically.
A derivation is a sequence of steps which convert the

older version to the newer one. Each step is directly reflected
in the journal of some site as a successive pair of entries, one

5,600,834
11

following the other, with no other entries for the file in
between at that site. There might be intervening entries at
other sites, which would mean conflicts elsewhere but not
for the derivation being considered. This sequentiality at a
particular site implies that the later of the two successive
versions was created directly by editing or modifying the
earlier of the two. A derivation is like an audit trail. As it
records all the steps taken to convert the older version to the
We OC.

Existence of a derivation is determined by procedure
"connected' of module "journal", which follows the direct
steps backward from the current version, skipping unrelated
events, until it reaches the prior version.

With respect to discarding obsolete events (step 4), with
out some way of discarding obsolete events, the journal files
would grow indefinitely. An event is obsolete at a given site
if there is a more recent event for the same file at the same
site. If an event is obsolete at all sites, it can be discarded
because it will never cause an inconsistency.

In order to track this, journals contains a list of "known
sites', each marked with time of the most recent reconcili
ation involving the known site. This list is propagated and
updated as reconciliations occur. The known site times
indicate when information came from the known sites. In
addition, each known site reflects these time stamps back by
generating a list of acknowledgements. An acknowledge
ment gives the name of the known site, the name of a site
known to it, and the timestamp of that source site. Again,
these acknowledgements are propagated and updated appro
priately. Originating sites may use the timestamps of the
acknowledgements to determine when events are obsolete at
other sites. Any event which happened before the oldest
acknowledgement time must have been propagated to all
known sites, so its predecessors can be discarded without
causing conflicts.

Finally, there is a potential problem about lost sites. If a
site fails to produce acknowledgements, it will cause events
to accumulate indefinitely. This could easily happen if the
site is no longer used. To avoid this, the program issues
warnings about any sites last heard from more than a month
ago, and removes them from the known site list after two
months. There is also a way to discard a known site
immediately.

Note that as to Journal File Format, journal files are
standard text files which can be observed and even changed
with any text editor. The files are formatted with one line per
entry, plus a header line.
The header line has the format:
Journal of <sitename> <dated <time>-
<programname>where <sitename> is the fully quali
fied name of the file hierarchy being journaled, <dated
and <time> are the time the journal was written, and

10

15

20

25

30

35

40

45

50

12
<programname> identifies the specific program which
wrote the journal.

The entry lines each contain a fixed set of fields, separated
by tabs, in the format:

<verb> <date> <time> <name><typed
where:

<verb> is one of a limited set of literals denoting possible
actions:
--create or update, making a new Version
-delete

*-some other site has a more recent Version, but it
conflicts with the previous Version at this site.

<date> is the date the action occurred (yy/mm/dd format)
<time> is the time the action occurred (hh:mm:ss format)
<name> is the file's name, followed directly by the type

(no intervening tab)
<type> is a single character;
(nothing) for an ordinary file
\ for a subdirectory
G for a symbolic link
Supplementary lines give the date and time of the most

recent reconciliation for each known site. Each line is of the
form:

S <date> <time> <sitename>
Acknowledgements immediately follow the known site

line for the acknowledging site, and are of the form
... <date> <time> <sitename>

where the acknowledging site (named by the immediately
preceding known site line) is simply reflecting a reconcili
ation time back to its source.
Note that the RECONCILE program of Appendix A is

built out of the following source modules, each of which is
represented by a CH- source file (<name>.cpp) and a
corresponding header file (<name>.h).

reconcil Main program, parameter analysis, and user
message generation.

site Defines sites.
journal Defines journals, performs most of the actual

work.
timestmp Defines internal and external formats for date

and time information.
myalloc Performs storage allocation and checks for memory

leaks.
entry Defines individual events.
filesys Performs local file system input/output

operations,
knownsit Defines known sites, manages times for deleting

obsolete events,
parse Supports text parsing operations in parameter and

journal file processing.

The following is a program listing for the RECONCILE
program, referred to herein as APPENDIX A.

5,600,834
13

APPENDIX A

if diffiliffjifiliffff:fff:ffff:fff:ffff:ffiliff fifi fif
fi fi
ii myth routal 813s f
f f

declarea class Entry d
F f
An Estry describes a 1s espent of to directory, it

it raight is a pain fly, a subdirectory, at it unsel ye2ink. i
f

aiw sawd powetter 8 a.k. Jax this Af

if A single Entry describes tea at all Sites with a task tied A.
if sadicatik thich Site XXX about the Emery. 8 organization if
if maxa t ratwey asy to vergw and conpire different S3 ex' fi
fi curtha. fi
if Af
did if Afriiffilipiffiliilifffiti i it iiiiffitiff

typede unsigrwaa car actica;
daine ANR
fire Aco

define cas
sefire CAS
del Ads
letire RRR

typedettinged cter Estry type:
aciers FEts t
desire EESR .
defice E.I 2

class Entry

six Bass sta:

put;

fit extructor
Etsyficexist Astol attorag,

cost car wants.
exist restric ta,
Stryyx tyrateg:

if action
i entry than
if eaty treatip
ii itty Eys

A catwctor
-Expyvold);

Are entry 3. As ties
st pool parentrycock car bit,

six char, ers. if reul in Frawr reasia, or NULL.
Site a if ace prewdig titry
Josual ki if journal exy eatered

A write recry 3ine to new journal
waid writeertryiPLE jouaifle

Actko action); di past acters

if at cost entry for the are fle, Wolf if na nare
Entry rotatory forts wo;

a gee previous entry for the sare tie, Wotto it exonors
Entry vitryotfilevoia:

filesysh :
finfidi filiff AF AAA affffiliffffiiihilidiidly finitial
f w

lesys.ta - itstartace to tike yoga fi
Af t
idiff affaiifff; if A if affia a Afifi faii afaa Aaffilii Aiii

P is encrypsies

boo get attributes cost ear targettiae
boot. Eattributes exist chair targetnaa struct stars at :
poo rapy recorat cater soureens. cxat char targetname:

trufile cost char targeraeli
statestablreat ear targetsa
mudirico char cargia;
radayatirixcoric car sourcerase, char but, late site struct tat" sai
stretcon kit caree chat" by strict seat);
riaeoigt car Eagtasise:

struct ta: ski

eanscruet pack raas cwt of their corports
stra ecoat chart graciasasters car drinara coast char drixth const char astry
cara,
as acts: artfile torst irst sixtee;

deta typed, ,) getathiwed, p, f, is lints

get irst set free a pact male
extern xxxi getfestatementent enar seat eotar chari asrat;

i get 8 lap
extra waiia Eatelcroft char drive car "abs, it abeas

if we - pathraae charipulation det had r zos, but not in turns -

fi coxwere 8 altare tro, relative to about, put it after
extra startupazhchat war cort car pist, it tufker

pit satrass rate it warica composeries
excerta Waid uplitpatacost tax patin, cat drive, car it cate a chart ext

is Earecatruct path name rom caportant parts an et which tight by K.
void waxopsichtchar *path, cort chart drive cast char Sr. coat car nine coast et
rt it

like Six Sl

egetary Axth xx -
cline NAXORIWE

&dkrti Akbik Air
date NAFAE At --
dafi AXExt XKASN

exit flags.--

-26

14

at last eaty to the axes tie
Exacryr sistancytotlewoiti

get previeus encry for this file Krka at a kite
Entry previatecacy Sces

get next antry to taile and site Void 3 f tort atty's owrridingariatryst" is

to True if there is a canal chain trar this a tatry to try box scorecastEntry cli

a&pt grab and nerge in childres of another eaty
woxid spectilities");

ii RE it sntry kara to site
xt sisted site s retura lastalk & sexqatsask) is a;)

ff associate ety with ite
vo axiated the Ask at wreak listaask & ask:wre?task z alski)

if treate city tex aita
via unatalist as in writsaak) is task is -sks writtak is ask

A rate it entry in site current directory loeas only)
xx3. iscoast a retirr tussak & br:getIxk} } 9 3

i grab child subci retary, leaving a hill behind
Jarrar racailavoid Journal te s child child = gil: tetire Ec
feet c subdirectory
was kakacticoat char as

wi raiserabar at this sntry is prosext in lexia directory
was setsurer ask ties ask mask

rvat: if no air peeking liberut
Entry nuxtentry A next atry is this journal
itry brewrity if sary.wixa atty if: thi? journal

tric chart syzane W taxon within directory
3rt task if as a listed at 1
ink use aski a tags for le actually sound
Action action; setset on is erry
Encryype type A type of t.txt exity
aestar tanasodified. FA tsar Eilwa waits
auta e 3d A cutta t syski rectory

3.

aff affaii Aiyapa was a aaaaaaaaaiii a
id in
if 3ruxnah - journs increase da
ji f
if declare class 3.x ra.
J
Af f

aura is a sat a stria for a directory or pixiirectory. A
d i

A Journ: at arrage in a hierarchy by is the child field
if of tags sitts as which detribe directs. fi
fi is
ii. As Journal tailip? & kit of jatra). ff
if Elis is used a keep a list of it-yet-proceak outtalia. ff
fi fi
if affijit Attififi'i AAAAAAAA afffff fifa AAA fift fif

as lost

public:

surnal conse that bustrar estrexor
roupial twid) AA exca

fi find or crosta etcry by as and alert an enres
Entry getary

ext stix Action if Egc ecs or w entry
coast char satya
ex8: Riska is
Entryyip ty,
in usuki it at ask

void is stantrysitry it its try tra arral
wad coabinsouri Aacuna oehri if it worrai
A data pressity or en jourass
void process.jgural to taplgwu orak wattsdagli

Karna graxercoravoid yearraw nextjesvaraai stjozsa Nui; ratura

privat

six ratjournals it a rere journal see the o journai
clai Ratty tirently a first entry is calls journal
era bar auxir; AA exirectory as within tw.
it woxaks #A aire lag for it ceased

xx readerconic car suff, eocast cars literunnet it pass assist liae
xx said rectory (Sit" i. if read local directory
x interdellation site ; if infer deators froasissing eactiss

pool raideral site A rst joute test sits
weid conteitsubirstvold) if merge to extreetoty encries
rot reciswold A recozele coatino cutta
woid writiournal site e XL taplew a writs jouesi far its
weia capturochildreneuraat jourta avobodice a excurs enlarr

15

knownsit.

// 1 liff fffffaff f///////// 1 / / / / / / A#,A##ffffaff affi////////
//

A? knom:st.h - decaro class Koownsite //
// Af
fit fifi fift if it fiftfth it 1 1AAAAti liff f/11771 1//

crash. ThreStarp; referred to becy

- cuisite & anx declaratic:

cas rrowess re

public:

it war bisi is ci w w w xxxw: the or ark
hatic Boo xia whicwy

cor its tsu: , in sniput utter
ccinst char' errra, 1 error we sage or Nytt.
ce k: 77 Bet for site, used or following acks

11 record arriovie-grrent that krane us naen data from relane
static vold acknowlege coost char' anaro, conut char rinure)

record tact that snaro was upscod by this recoratiliation
tic Weld rurcofaciliatlodeargot const char snara

it get rid of known site
utate Ycid kills lite conut ctur" snaine);

get rid of ebolete site
in Latic void kill oldriteswold);

it get ordat a kiwigotect from All Bited to Bite the
ntatic TaeSeasp ractareccitat char snapw

a write knob sites anx Acky c.) tournal
hLAcc woid WriteknoWalto ("I E') ou inarsle;

class up known sites at crid of run
static void reseckxx/31 ces (void;

private:

cost citat ulterane
Boxo killed

Anchus to Yost: 11 private culin turtor
-Kuxttp:Yogi: 7 p. iv.utol) tra turto

totatic art dxcavate cott rar" scar- AA fins. cxxn: rs
as it razkekrora teaconr. char starr): A fins or rake
stacle voyd interrack ant k, int.), TuneScaps tal

agatt int rikirch; // number or kicwt sates
static ktownsite crown, 11 victor of known at
static TimeStaap ack. A acka, acki rkraun

WW acke (1, 4) try was 4a (10x ra (for
WW ack, r is kitext of "a tim
7W ti acknowler 3:

parseh --

///d/dlf Ait filt 1/1/11/11//11/11/11/AAAAAAAAji if/Affif 1////
// //
a? parse.h - parsing routing /
// //
111 ffffffiliatti JAA/11/////////17/d/, /t/, Affilifffat ifi //////

compare prefix with stratry, rvett pointer past it is Ratch. NULL if not
wxtern rang star skirk social car "prefix, six car an

can are word tourided try with teace) into tuter. return advanced cata
war cost but getscard conte Clar cars. Clar tx2. 3al st

top are two tile naaws capo Answins tive in D3s.
extorn int targxamplconst char 'strox 1. conse char stra):

fi return pointer to beginning of text word in butter skip rurrent one
extorts chartpetword char bufft

5,600,834

- 27

16

nyalloch
f/////////// / / / / / Affiliff ifi AAAAA//w/////// / / / / / / / 1 diffff: Alf
lf
f f ayalloc. b - safe nanory sociacic k core 10x deter than
Af #1
a cofinou nurnary allocation and release Proceduree With ability to a
// catch failure to be allocatex rectory of to doubly sloxate, it
A/ At
AA Testn return codes, aborts if arror. AA
f/
, also supports one very rise tutor ter tast tile copying. w f/

macro entry points r
a/ us the racro to attcaat 3: riuator cert first cr1

// A catar Arsatiric of a popco ob) ct:
define QEW acroching stri (wold ''A (Bora thing). Szwo -owti LE, L.

1N

allocate an natance cf a ported-to object
define O'NCOPYsomoching... od} getcopy (void

CDry tring to it.
"It trom thing, gld. --Piur. -Li crl

// resaw an instance of a paintad-to object
defino RENE oathing relaa (void 'libonathing, FILE LENE}

// append to a otrio, releasing od is arcial locating new larger st
definv AppENDSTR x1, 2 appedstritag1, s2, ...F.E., LiN

A copy a atring to new allocated string
defino Copy Skscretching copyistring Boatbox, WIL, LINE)

dA win true routries

extern vaid garami void something. canat in c axe, coast char sourcet'. conet tric scu
rceli Tip)
extern void getcopyvoid disc, ense ear src coast car source1le conne at acrew
re)
exterm void relian void something, cast charaource ki
extern char rappendistria (coast char atrol. cort char string, coast char
conut int ourceirta);

wxtern char copyistring (conse char Reures, coast char

conse it cut celine)
curate

ource file, ecost at source to

// ra: this at the ond cr the prograa run
axtern void vur Atyrverything frowd two d} i.

--- larvo turfer a location -

11 allocato late tufter
extern vaid gatbut forcnars buffer, int buffs 12

11 releana large tutor
extan void rebufferchar's biter)

rococch

77/7///www.laafilt affiliffffff aff//ff/fll// till fift fift fift
//
// trodes).h - global coastart and variablea for recocile programs
d/ AA
ft. This río defines cle interface for reconcil.c AA
// A.
//w///777/7/7/11/fiddafi fiti aftana in 11////d/, // if it

// too loan wa w type aging tra c language

frndo boo.
Marst sool in
dofoo FNS O
detsin two
midst

// Journa) to nause
fdvf MSX3.

define sourNALYLE interaal.nl.
SDOS.

(define JctrxxLP
endit 17 xSDOS.

...jourts

a progra-wide paraucers

xtwirth char worsical A rashes and werhoa or the progri
text tool quiet. did run with a macAkwa of were "q optica)
extra B00 roup A? do to update Any directaria win optica)
axton Bool pressler if recociliatico was inperfect

a motiry point in reconcil.epp

a nochrerror rease "vert tran ource to target."
void a robunaaqueocrat char Yerb, const char source, coast chars target

in Warning pessage - prograa continues
vold Warnhoyitsugecoast chAr Rurage, ...)

a warning poasago - error doing eystars operation
void Piloyotorwiesagent char verb, cent char fileraser

it vrror manager program exit
wold Fatahiraqwcoring that sauge, ,

if error regate - interra proble - program exit
woc A Mortorrailexicoat char file, consc int in
their Kiire As8wrecas (S.L. L NE}
adena AsserTip 4t its FriuRE

17

at AAA i? affair fify at if f it if 1/11/fift
A.
a bite.b - description of a nate being
A.

defines class Sate

fi
roconciled with other AF

AA
f
Af

in 71 lififi //7 if it w//fi fill 11 it if ///71 it iiii 17////w

it or kanIt - - - retai al is - r

class site {

pixth te:

sexxl rode 300l. Vacces
virtual Scevoidy
Otatic wbid rurototyavod)

(delite firstate 1

Virtua) is local two Ad) (s;
ool issource(voc)

A / constructor
// destructor
11 delete all altws

11 x s a soci sate
11 provide reconciliation into

return (1 slocal it writeronly ; }
socliatarget (void) 71 recews reconciliation info

return tislocal i ! readonly);)
KX radabletvoid

return writuary
Aool. writable(volt

return traudony:)
virtual boxol. As updatable void

raturn FALSE: }

void donatwritewoit
readonly ruE:

statie Site getfirstsitative4
return frtsite:)

siter getnext itewcid)
return nextsics;

voic
cont that gets eelanetwod)

cus tunaneccist char' tenannary:

// OK to raad journal

// CK to wri to journal

// OK to update

in prevert wrating journal

11 start literation over sites

a continue Steration over la

A bet. httwa) bice rises
// get sits name

return tenure *e NVL) 7 Sitenure I get rootnant);
virtual comint char get rootnamewold)

return NJL)
at kvoid

return wax
restarp gatack tirewold)

treturn Jck tire
Wola wark cottisestamp to)

Ack ELMr n to

1 / curfak (10 fo
virtual FE' open}ournal (const cha

// wet a tax bit

w/ get cine of last ack

// art time of last ack

* subdar, const char adde) = (;

A get accal directory root

5,600,834

virtua woid ceaplainabout) ovrrayfi locent eharr subdir, const char abusage, coast c
air of a C

private;

static Sea" tirtsite hed
So nextra part

conse chair triars:

timestioph:

of site list
in site at

if site name - as consistent as possible

fia lilff fift fa?t it fail fanfaffa faitamaailiff Awuwaffair fit
AA f
if theates.h r time staping and corparinoch ff
AA ?

declare Ahn "roastap,
di Dektares global warble "t" to prograa being run. f
AA f
A/At 111 filian//7/AAA fif/////liff////// if Alli//all////d//liff,

clai Tistamp (

put Act

// coastructor
Testamp void);

a rost to wery early time can distinguish with neveret seleul
wo. Civod)

fi set from a yata time
Void ptsumptibdtint Pyscontine);

1 acticact a lyst twe
tint getti avoid
if fill in date froe tax t in butter
pool parodate const chart buff),

fill in time frces tant in buffer
Kok parape or cost curs batt)

a tout date to returned string
char' shadiatowcid;

1 for at vie to returned stric
char showtimer voic
17 compare two tieptanc? (irtut -1, 0, will a if its sca2)
tried ant compartner(contrinestamp tas, constrinestampi ts)
7 spee to row - caths
void getpast (coar int months):

AA Tril 1 f Exmoscap Waw rest twever is
0. Boxol reveret (Yoid) (return to

private:

urged char yr;
Wrwriod char Ac:
wn ind chAY dy
unind char hr.
wnsigned char an
unsigned char Me

) a

fi - - ----- globals --------

extern aestamp new;

ce an Actual valvo

- 28

18

// mask bic to Y ch: it
// nwit unal ocated it sk
ft do not read old courtyal Eile
// do not write tar journa) tie
// thr acknowlerged by all known sites

at Haak;
static lik textwax
Box). Wr tally
00L. radony;
salestamp Acktime,

)
-

a - outal to huss

cass laxal site : public Site

public:

Local stuccist char" thana, hool, rod, BOOL, wroda, Adol. cock
mlocastevoid
sool allocal void) return TRUE
pool. 4 supiatable voids truturn incupdate A updatadar}:)
conut char setrotrapwold) (ttur rootfire; 3

FILEY cpenbournal (cense char Bubd: r. cant char node):
void comparaboutsourns fia?const char subdir, conut chart aesa

f
cons chara but

private

eonat char' rootrast
exol, updatediri

in pathnahe of data subcrer
// update fies in directory

ff r- - RocSite pubclass -

ca RaoteSite : public Stu (

privaty;

cant chat in Al // extorfa you ra tile narw

Public
Monotos.stconst char ran KXL rode, Kool waode):
-Amots: two d)

XXL, cca wold) return PALss 2

F1s openjournal comat char' Dubdir, cont star modwin
void couplanabout journal twcoust char aubdar, cont char

f

3.

21

tguru fail ?//dailiff hip if A/AAA fift / if A ///fi fift f///
A. //
17 filesys.cpp - interrace to file syster f
A. //
f//fifth/Wifi ///lih/////f Ad//////liff if//W//ffiti//

// --------includes--

true c.t.'
drclude pywhatar.t."

dat KSCOs.
cerite Paris EPAwaryR WW
Idefine PATHSEPARATORSRig V\r
include do.n'

Pinclude so.
clude "dr.h.

else in MSXS.
define PATHSEPARATOR 't'
deine PATMSPARATORSTRING 1.
include uned,

yclude Ayr), nik."
and AA SXS.

include reconcil.hr
include rveys.hr
include "nyaloch'

--------file system code--------

7 copy file of site to te

Sool, copy file(coast char souretoriane conut char" targetname)

it n:
re.

struct tat ca;
it info
art outd:
chart butter:

a site

tdof NSCOc
irit Awofisode r - Modi

node in Ossary
Pixiif Aksdds
and v open (skirchmare, ORXNY:

it infei - O Filesystemasage open, scurrename);
relati ASE;

if statinfid, int) . 9} {
Fiory taken age get attribute of sourcenas)
cratic
rreur FASE

filesysopp:
brxit.Jode

end if fi SDOs
& O Filesystidrasage create subdirectory, targetname):
retutt rst

Dayspronors u proble
Eactributes targetnase, nt;

prova e saytrobot

return TRUE;

WW wad yokol ink

0 dot MSDcs.
priyaa arvumed
Peddlf / NSdos.
hoc readsyniak (conut ctar sourcerar, chart bufe, at size, struct at at by

tide bisox's
rotuto PSE

else flkoxS.
8 : yet attributes (aircra, b)

retur FALSE

it tradiankourcunawe, but sigo: a)
Filayatablessage road link r, sourcenae)
ract ris

return TRUE;
endifff Jescos

A craate yakolic link

lifdef wisdos.
pragma arausex
tendt discs.
pool, erextel ink (cont ear tarwram, chart our struct stat ab}

ifde scos.
return YALSE

Vel he dos.

it synlink(surf.
Floysteakwu
return PASS

rytnaw & t (
screate link, targetname);

Heattributes targetnam, ab).

return RUE:
drid it iscos.
y

if get attributes

pool. qerattributes coast triar pourcerame. truct stat so

it statsourcenamo. b) < 0

5,600,834
22

it and < 0.
return FALSE;

outfi & creat(targe case, stoce;

dat KSEXS.
tacids s savethode

pad it // N3XOS

ri abosage('Lit', targsthane);
clic into
return FMLGE

gotbafter (but for... but tugal
for :) (if copy ocp

at n w raad intc., tarter, turfsize)) < 0) {
Filesystgahassagarahdi'. sourcenaras);
closenta),
cloucuted)
into targetname}
relbmitterburtor)
recur FASE;

}

if in Ka D braak

Wtsie (x 0) {
rc c write outd. buffer, n:
if arc & O

braak;
in a re.

it re - t Filesystakes page:Write", sourcenare)
closelrid)
c)oad (outfd):
rats) targetman
relbutterixit for
recten ASE;

} wn copy loop

cious(infa) clope(outfd)
BetAttribute (targetmarev, kab} .

rol butterber
rtura TNUE

)

AA crate cew Mubdiraetory

800 crutisubdir (coast char tary trans a cric: stic" ab}

Pool save problen;

it lakdri targetname
incuffsdoS

filesys.cpp.
Filesyatanisasaga "get attributes of", sixrcename:
reur FAS:

rts ros

fit at attitutes

Xol stattribu coast char targutnase, trict stats at

struct tw: Le

ut. actine abrxist-Atime;
ut...otsap s brotate
it utine (char) targe case, Kuti :) Filesycessavourt date for targetnam)
if (cod (targetAba, b-- twode) : 0

Filesysteadabaguibot accost Control for', targethwi.
return RQE.

if renor Al4

bxxol raile(comat char targetnam)

if unlink targstra) 0)
Filesystusage(raiove", targetnant

return RUC

in rows aubetirectory

boo rasubdir(const chart targetnw)
t it (radir (carataw) - d 1 probably nonapty xxx

Pilesyatnessage renow subdtractory" targatra)

returt True;

rows

idof GDOS
pragma argued
Krdif it upoS.
od, railinkcoat char targataA.

t
featurisdos

roton FAAct
Kolpo a 4x8.

ir furlink tatgcrane) & G) Filesyatabessage-resovo link, targetraat

rture are
podi. At Mix

-- - pathnaas Knipulation (defined in DoS, but dot in Unix

ird WSCos

5,600,834
33

... ::::::ayalloc.pp
affaff fifi liff A///www.f a fiffidfiiffiti aa 1/1//ia Affffff:ffff
f f
if payaox. epp - Rate memory alaratxon & core leak dotecticm 1A
A. if
lifia if Affif AAAW1 1///7//ff/fift in liffff:ffff/////////liff fffff:fff;

in - - includes -

biraude std: b.h.
tracuda atdo.
include string.h"

include 'nya, loc.h"
in ud record 1.

- with a - - -

a define BE3AllaxATIONs to caple with extra checking
de: it loexWaxtMTitohs.

Piedrf broud AllaxATONS
type-def struct xenory) ock :

struct amoryBloxx next:
crorst char sourcefile; f FLEl where a) located
int sourcel line: .NE where allocated
char frathyte fi initial byte of a located accrags
moryblock;

state xerorysock wr (rstmory.allock is ruit.
ext is 9EvGALLOCATIONS.

stat it blocksal located: 0

/1 - rr safe allocation & wik detectic? -

if allocate parory block
void getawavoid 'uomething. cast int aige, cont char sources, contint sourceline

fief dEUGAlloCATIONS
binary lock "da
dt if DE 80GALLAXArols

1 "overhiw fix NWLL)
partefacderr, "Allocate over object; a WAV", line $dxn", ource filw, our

crite;
exit();

titdef dEUXALLOCATIONS

cist is encrylock ralloc (size + sizeof Xemoryblock - 1)
if dst ga NULL)

fprintt(tderr, "out of acryvn)
exit(1);

it trutworykock
taryhirk a dat;

sure a u tource filt

re - prevptr.
previper s srcrxnext
freerci

depri d'UGOxMcNS

treet"chathing);

entiff Ceuw LAXATIONs.

taracting is NULL;

if append string2 to string), reallocating

char appendscring const char Ystring, conet char entring2. conut char racurcarrie, const
it currine}

t
char Vdst E. WLL;
at r s ar) litting

they west "")&da, n + r(strirw33 - 1 hourcat
cer? dot, string a

stropydt + a string2}t
RSElipcrary);
return d

sources)

}

fi copy string to Allocated space

Char easy tring conut char 'Jourse. conut char hourcefile, conut unt sourceline)

dhar dst Noll
getcory (Yoid "") ide, ource, aourcefalo, ourceline;
etus it:

af verity that verything allocated as trex

void westyeverything reed (void

fidet OEPUQAliocMTIONS
hacry.

if trutnenoyboxx is Hull
fprintfitcherr, The following were not freed; Wnt
for (no r tirthmorytock so tie Nutt. ab b-next

fprint accorr, aeriory block a located at file sks", in Vawn", abour
shavares no

xi (0.

ock abi

teadif it. KALACATIONS

ASSEST blocksal located us ?it

large buffer allocation re

-36 -

34

royalloccip
dist: sourceline so feece
othing s waiti discrxtire cyce:

fello 11 DExascotNS

something is alox size):
if (vooething ris Null.

fprintfiscaiser, "out of namory \n");
exit(i):

Badif / J Drug AlacAT:cis
block saliccated a

it copy a tring into allocated pace
void goscopy void dat, conkt chur ‘re, const charaourcotile, coast int circaine)

i char cpy Null

it widt is NLL
tprintfitderr, copied over object: exile v sourcel "... line VdAn", nouregi

Dw)
orit()

gatre void tricpy, strlen (src} 0 , sourceflis, sourcelino),
strcpyey, sire;
"dist a cipy

)

11 rulina as previously alwatard block

void relmavoid spathog, const char source carxt irc curlina)

defeatx. Alogists

bencryblock spreyptri a'.
encryslock src;

hood it a persuc-AllaxATIONS.-

if ("oathing == NULL) ?
printf(acderr, released null object: fle Visw, line widyn, acurefil

w)
exit()

Cur

blockhocated ate t
it (blockwallocated a 63 (

fprintfittierr, Releaned more objecca. than allocated filo v. Luv' sire advn,
ourceflier, wburyins}

tita),
faaf DEBUGALACATIONS.-

for (previper firstmenoryblock; "prewptr is Null. S& void prevptr) -- rattyer
a something prevptr E G promptr) --oaxt) :

if prewpte re ji.l.) (
fprintercasser, Rolanued non-allocated oujects file v

o, outcry
exit()

", it is Kiree

inyaic:
buffer, inti buffaxxu)

out tra char Jaaloc (4096);
it (extra or hull.

Fatalasagot's homory for txt car
for buria 63 B&r buffer char sailoxbufflizei is NULL toutsize - x 4096

if (buffaize = 0
Patakeasage:No remory for buffer);

}
free(satra

)

void ral buttercharts burfer)
(

rebuffer)

5,600,834
43

Having above indicated a preferred embodiment of the
present invention, it will occur to those skilled in the art that
modifications and alternatives can be practiced within the
spirit of the invention. It is accordingly intended to define
the scope of the invention only as indicated in the following
claims.
What is claimed is:
1. In a computer system not utilizing a global database,

but rather utilizing a collection of local databases, none of
which serve as a central collection point, in which files are
stored and modified at memory devices at multiple loca
tions, apparatus for permitting the creation of new versions
of a file at one location without knowledge of whether
conflicting versions are created at another location, com
prising:

a portable memory device transportable between loca
tions on which a file version is stored; and,

means for safely permitting reconciling different versions
of a file transported from location to location on said
portable memory device, said reconciling means
including

means at first and second locations for generating a log
entry at its respective location, each of said log entries
including a time stamp for the version of said file on
said portable memory device at said location, said
timestamp serving as a unique identifier regardless of
the time indicated thereby, thus to create a history of
version creation and modification for said file at said
first and second locations;

O

15

20

25

44
means at said first location for entering said log entry into

said portable memory device;
means at said second location for reading out the log entry
on said portable memory device and for combining the
log entry from said portable memory device and a log
entry at said second location so as to compare both
modified versions and respective timestamps to inden
tify missing entries or confliction updates represented
by different timestamps and thus the existence of
different versions of said file;

means at said second location and upon said identification
of different versions of said file for determining actions
necessary to synchronize said different versions; and,

means at said second location for determining if such
synchronizing action would result in loss of informa
tion, whereby combination of all versions of said file
may be safely accomplished at said second location.

2. The apparatus of claim 1, and further including means
for performing the determined synchronizing actions by
copying or deleting files.

3. The apparatus of claim 2, and further including means
for notifying the user if said synchronizing actions would
result in loss of information.

4. The apparatus of claim 1, and further including means
for purging obsolete log entries by purging a first entry if
there exists a subsequent entry for the same file and if that
Subsequent entry is available at all other locations.

sk k k is :

